
 

 

 

  

Abstract—We describe a novel method of combining multiple 

random sequences using a “temperature dependent” combiner. 

Each random sequence can be regarded as a prediction model. 

The goal is to develop an efficient combining methodology that 

takes into account the performance of each forecasting sequence 

in an “optimal” way when calculating combiner weightings. 

The method essentially involves the decomposition of the target 

time series onto a   random sequence basis. A FORTRAN 

computer program CRANSEQ (Combination of RANdom 

SEQuences)  has been developed to implement the algorithm. 

I. INTRODUCTION 

HERE is a large body of literature describing how best to 

combine models of various types of processes [1]-[7]. 

Two such groups of methods are ensemble methods [8, 9] 

and mixture of experts methods [10, 11]. Combining 

forecasts effectively is a non-trivial process in the case where 

high levels of noise exist, as can occur in many 

representative time series structures for industry.  The 

current trend is towards combining predictive models, rather 

than employing large monolithic predictors. The advantage 

of the former is that such a methodology would be more 

efficient in terms of training time [12]. Further, it is also 

possible to achieve a lower generalization error from the 

combiner [13], as well as to prevent overfitting. The models 

considered in this paper are random sequences that are used 

as prediction models for the time series provided as data for 

the NN3 2006/2007 Forecasting Competition. .How can an 

effective solution be achieved for such a task, an important 

component in the overall prediction process for time series 

with important industrial implications? We consider that 

topic in this paper. 

 

A novel feature of the methodology developed in this 

paper is the use of random sequences as prediction models. 

These random sequences can be considered as basis 

functions for the decomposition of the target series. The 

problem one is faced with is how to combine these sequences 

in order to effectively leverage their intrinsic randomness to 

obtain accurate forecasts of the target series.  We should note 

here that the chosen random input sequences chosen for the 

various “models” are all different, so that one can assume 
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that the different models attempt to extract different 

information from the target series. So again the essential 

question remains: How can an effective combination of 

random sequences be achieved? 

A simple approach is to take a linear combination of the 

sequences which are regarded as prediction models of the 

target time series. Thus, we take a set of M  weights 

Mwww ,,, 21 K  (where M   is the number of random 

models), and form the weighted sum 

t

MM

tt
xwxwxw +++ L2211 , 

where  
t

ix  is the prediction of the 
th

i random sequence 

model at time t .  We are then faced with the question of 

how one should choose the numerical values of the weights? 

It is the answer to that question that has been a central focus 

in prediction over the few previous years, as the references 

already cited indicate. 

 Originally, the combining process involved simple 

averaging over predictions from all random sequence models 

for a given target series. However, this method did not 

penalize bad models sufficiently. As an alternative, a linear 

combining method was developed which minimized the 

prediction error over a specified test set. This, too, did not 

sufficiently penalize underperforming models, as determined 

by careful and extended testing. The method described in 

this paper is a modification of the technique described in 

[14]. It incorporates both averaging and “winner takes all” 

methods. This is achieved by linearly combining all 

predictions such that, given the data, the “best” prediction 

can be determined when measured in an appropriate metric. 

A novel aspect is that the current combiner weights are 

obtained from a SOFTMAX distribution [10, 15]. The 

weights can therefore be interpreted as probabilities, as they 

lie in [0, 1] and sum to unity. 

 In the next section we describe the methodology employed 

in the development of the combiner and in the following one, 

the corresponding algorithm. In section IV, we will present 

the results for the NN3 competition. The paper concludes 

with a discussion of the results, and scope for further work. 

II. METHOD 

 We want to derive a linear combination of all the random 

sequence models such that the “best” possible prediction can 

Time Series Prediction Using Decomposition onto a System of 

Random Sequence Basis Functions and a Temperature-Dependent 

SOFTMAX Combiner 

Neep Hazarika 

T 



 

 

 

be determined given the data, when measured in an 

appropriate metric. Such a metric can be provided by the 

Symmetric Mean Absolute Percentage Error (SMAPE) [16] 

of the individual models. The SMAPE is defined as follows:  

Given a time series x1, x2,,…..,xN, the SMAPE for the 

random prediction sequence Nxxx ˆ,......,ˆ,ˆ
21  is given by 
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where  ix  is the true value of the 
th

i  point of the time series 

of length N , and ix̂  is the predicted value. 

 We also want to normalize the weights jw  given to each 

prediction model j  such that they sum to unity. The weights 

can thus be interpreted as probabilities, i.e., they must be in 

the range [0,1] and they must sum to one. Such a 

normalization can be achieved using the so-called Potts or 

SOFTMAX activation function [15] which takes the form 
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of the 
thj  prediction model sequence, and M  is the 

number of models. The term “SOFTMAX” is used because 

this activation function represents a smoothed version of the 

winner-takes-all model, in which the prediction sequence 

with the largest “probability” is given a weight of +1 while 

all other weights have output zero. We incorporate two 

additional parameters k  and T  in this model. These 

parameters are determined by optimization in order to 

minimize the SMAPE of the combined prediction over a 

specified training set. When T  takes on large values, the 

average of all predictions is the best that the combiner can 

obtain. Such a case arises, for example, when there are a 

large number of equally poor models, so that the combiner 

cannot distinguish between them. On the other hand, if some 

of the models outperform most other models,  these are then 

singled out since T  tends to have a low value (as expected 

from the winner-takes-all strategy). Also, the winner-takes-

all model is recovered in the limit ∞→k  or 0→T .  For 

∞→T , we regain the average, with no a-priori 

knowledge. The parameters k  and T  can be determined by 

using optimization techniques, as described in the next 

section.  

 

 

III. THE  COMBINER ALGORITHM 

We now describe the prediction methodology, and the 

combiner cost function to be optimized. The algorithm is as 

follows: 

1. Preprocessing of the target series is performed by 

first robustly detrending the data. This is 

accomplished by fitting a minimum absolute 

deviation line to the data and calculating the 

detrended series as  

   xbtaxx tt ++−=′ )( ,  

 where tx  is the value of the time series at time 

t , a  and b  are the intercept and slope 

respectively of the trend line, and x  is a value 

chosen to be large enough so that the detrended 

value tx′  is always positive. This is necessary to 

prevent computational errors while calculating 

the exponential in the combiner cost function. In 

most cases, x  can be chosen to be the mean, 

i.e., 
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 where N  is the total number of points in the 

target series. If a visual inspection of the 

detrended data displays a large variance, the 

data may be further transformed using the 

logarithmic function.  Further, the data is 

subdivided into a training set of length trainN  

and a test set of length   testN , such that 

.NNN testtrain =+  In this paper, testN  was 

set equal to 3N . 

2. Let maxx and minx  represent the maximum and 

minimum values respectively of the detrended 

(and, if necessary, transformed) series tx′  

( Nt ,,2,1 K= ).  

3. Let the number of random prediction models be 

M , and let p  be the number of points to be 

forecast. For the purposes of this paper, a value 

of M  =100 models was sufficient.  

4. We now generate M  random sequences drawn 

from an uniform distribution, each of length 

( pN + ), using a random number generator, 

and transforming the resulting values itx̂  

;,2,1( Mi K=  ),,2,1 pNt += K  such 

that they all lie between minx  and   maxx . Each 

of these sequences can be regarded as a 

prediction model for the target series.  



 

 

 

5. Form a sequence of M  model SMAPEs for 

each random model ( MiSMAPEi ,1, = ) 

over the first trainN  points: 
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6. Set  up a counter   n  for the number of 

prediction models used at each step, up to a 

maximum value of M .  Initially, set 1=n . 

7. Compute the sequence of trainN  combined 

predictions for the n  models on the training set: 
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 where the weights j
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level n  are given by 
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 are functions of the parameters 
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well as the parameters 
)(n

k  and 
)(. n

T  will have 

different values at each level n  as the number 

of random prediction models is increased. 

8. Compute the combined SMAPE on the training 

set at level n  as follows: 
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Note that train
n

SMAPE
)(

 is also a function of 

the unknown parameters 
)(n

k  and 
)(. n

T   

9. Determine the value of 
)(n

k  and 
)(nT  at the 

global minimum of .)(
train

n
SMAPE  The 

global minimization is performed in this case via 

a simulated annealing technique [17]. 

10. Compute the weights j
nw )(

, ( nj ,,2,1 K= ) 

in equation (1) using the values of  
)(n

k  and 
)(nT  obtained at the global minimum. 

11. Compute the combined predictions for the out-

of-sample test set as follows: 
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Also calculate the combined SMAPE on the test 

set: 

First, obtain the combined predictions for the  

original test set.  This can be obtained by adding 

in the original trend line for the target series as 

follows: 
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If the detrended series was transformed via the 

logarithmic function, then 
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where tx  is the value at time t  of the original 

target series. 

12. At each level, record the minimum SMAPE 

achieved on the test set, as well as the optimal 

number of models   nopt , the weights 

j
noptwopt )(

 and random sequence values 

jtoptx̂  ;,,1( nj K=  ),1 pNt +=  that 

produced this SMAPE. 

13. Increase the value of n  by one and repeat steps 

7 to 12 until .Mn =  In this study, a value of 

100=M  was found to be sufficient. 

14. In order to simulate a global search as closely as 

possible, steps 4 to 13 were   repeated  several 

times and the relevant quantities described in 

step 12 were stored in order to determine the 

optimal combination of random prediction 

models that minimized the SMAPE on the test 

set. We used 200 simulations in this research.   

15. Finally, the required p predicted values of the 

detrended target series are computed as 
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 The trend line is then added in to obtain the 

predictions for the original target series in a 

manner analogous to the formulae in equations 

(2) and (3).  

IV. RESULTS 

The general effectiveness of this method is determined as a 

function of the SMAPE on the training set. The effective 



 

 

 

generalization capability of the combiner remains to be 

verified after a detailed comparison of the results obtained 

from the NN3 2006/2007 competition.  

 

Various modifications of the combiner have been studied, 

e.g., fixing the values of k or T, or only allowing them to lie 

within a specified restricted range. None of these 

modifications appear to be beneficial, as measured by the 

generalization error of the resulting combiner on the training 

set. 

 

V. CONCLUSIONS 

The decomposition of the target series onto a system  of 

random sequence basis functions,  used in tandem with the 

temperature-dependent SOFTMAX combiner developed in 

this paper leads to a highly effective prediction  

methodology. This technique allocates the highest weights to 

those sequences that best model the target series. However, a 

more efficient search algorithm for the optimal random 

sequences could improve the performance of the method. 

Also, the global search could be greatly enhanced with 

increased computational storage capacity, as the search could 

then  be accomplished with just one iteration sweep over a 

much larger ensemble of realizations. In reality, only a few 

random sequences will be chosen as basis functions for a 

given target series, with the majority being allocated weights 

that are zero or negligible. 

 

Further work needs to be undertaken in order to relate the 

current methodology to others, such as those based on 

automatic relevance detection which employs Bayes’ 

theorem. Some progress has already been achieved in 

constructing a Bayesian optimal linear combiner, using a 

linear relevance vector machine (RVM) predictor [18, 19]. 

We will report elsewhere the relationship between these 

approaches. 
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