
 
 

 

  

Abstract—Support Vector Regression is one of the promising 
contenders in predicting the 111 time series of the NN3 Neural 
Forecasting Competition. As they offer substantial degrees of 
freedom in the modeling process, in selecting the kernel 
function and its parameters, cost and epsilon parameters, issues 
of model parameterization and model selection arise. In lack of 
an established methodology or comprehensive empirical 
evidence on their modeling, a number of heuristics and ad-hoc 
rules have emerged, that result in selecting different models, 
which show different performance. In order to determine a 
lower bound for Support Vector Regression accuracy in the 
NN3 competition, this paper seeks to compute benchmark 
results using a naïve methodology with a fixed parameter grid-
search and exponentially increasing step sizes for radial basis 
function kernels, estimating 43,725 candidate models for each 
of the 111 time series. The naïve approach attempts to mimic 
many of the common mistakes in model building, providing 
error as a lower bound to support vector regression accuracy. 
The in-sample results parameters are evaluated to estimate the 
impact of potential shortcomings in the grid search heuristic 
and the interaction effects of the parameters. 

I. INTRODUCTION 
ime series forecasting with computational intelligence 

has received increasing attention in theory and practice. 
However, in order to prove their efficacy in forecasting 

their accuracy must be evaluated against established 
statistical forecasting methods on empirical datasets [1, 2]. 
The 2007 NN3 Forecasting Competition for computational 
intelligence methods provides this opportunity on a dataset 
of 111 empirical time series and a reduced subset of 11 time 
series in order to establish the forecasting accuracy of 
computational intelligence methods on business data.  

Recently, the method of Support Vector Regression 
(SVR) has shown promising performance in various 
scientific forecasting domains [3-7], offering a non-
parametric, data-driven and self-adaptive method that learns 
linear or nonlinear functional relationships directly from 
training examples [2, 4]. However, recent experiments have 
demonstrated that despite the promise of automatically 
estimating optimal predictors using statistical learning 
theory, SVR offer substantial degrees of freedom in 
forecasting, requiring a data dependent selection of the 
kernel function and its parameters from a set of potential 
functions, and two metric scaled parameters to control the 
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cost and epsilon-insensitive margin. Hence, support vector 
regression share common and well known problems with 
competing forecasting methods such as artificial neural 
networks, offering near endless degrees of freedom in the 
choice of architecture parameters to be selected based upon 
their performance on short and noisy time series. Due to the 
lack of an established methodology, a number of modeling 
heuristics and ad-hoc rules-of-thumb have emerged in order 
to guide architecture decisions in SVR modeling. As 
different heuristics may lead to distinct models and varying 
performance, they require a systematic evaluation.  

To further investigate the capability of SVR in time series 
forecasting, SVR is applied to forecast the 111 time series of 
the NN3 competition. In order to determine a lower bound 
for SVR predictions in the competition, this study seeks to 
compute benchmark results using a naïve methodology of a 
fixed parameter grid-search with exponentially increasing 
step sizes. The heuristic is limited to a radial basis function 
kernel, using a simple preprocessing of input-data, and 
following a simple ‘pick-the-best’ approach in model 
selection of the candidate with the lowest cross-validation 
mean squared error (MSE). Considering the naïve heuristics 
employed, the methodology actively neglects relevant 
modeling guidelines in SVR modeling, such as regarding 
data dependent kernel selection, candidate model selection 
using k-fold cross-validation for performance prediction, 
adequate scaling and preprocessing of data etc. Hence we 
develop a naïve benchmark utilizing available computational 
power as a lower bound to SVR performance. The naïve 
grid search estimates 43,725 candidate models for each of 
the 111 time series, computing a total of 4,853,475 models 
for the NN3 datasets. In addition to providing benchmark 
results, we analyse the interaction of different parameter 
choices and interpret the results.  

The paper is organised as follows. First we provide a brief 
introduction to ε-SVR and the relevant model parameters in 
forecasting, followed by a short discussion on alternative 
methodologies for modelling SVR. Section 3 outlines the 
experimental setup of data pre-processing, SVR parameter 
selection and the SVR candidate selection, followed by the 
parameter results and an analysis of their interactions.  

II. SUPPORT VECTOR REGRESSION  

A. Method Background 
The method of Support Vector Regression (SVR) is based 
on statistical learning theory by Vapnik [8] and estimates a 
function ( )f x  that minimizes the forecasting error on a 
training data set ( ) ( )( ) ( )1 1, , ..., ,y y Y⊆ ×x x X  while keeping 
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the functional form as flat as possible [4, 9, 10]. SVR is 
formulated as convex optimization problem with slack 
variables ξi,ξi* to allow for model errors [11, 12]  
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which controls the trade-off between overfitting and model 
complexity through a regularization parameter C>0 [8].  
We employ ε-SVR, using an ε-intensive loss function, that 
assigns an error only to those observations ξi,ξi* ≥ 0 outside 
the ε-insensitive tube [13, 14], named support vectors [15], 
using the loss function 
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To handle non-linear functional relationships in forecasting 
problems, the data are mapped using a kernel function φ into 
a high dimensional feature space F , where they may be 
solved linear regression, which corresponds to nonlinear 
regression in a lower dimensional input space [5].In this 
study the radial basis kernel function (RBF) is applied, as it 
is commonly used in ε-SVR using just one parameter γ that 
to determined the RBF width a priori [3, 4, 16]. For the 
RBF, the number of centres, location of the centres, the 
weights and the thresholds are all determined whilst training 
[17]. Various basic tutorials exist to provide an introduction 
on the background and the mathematical properties of 
support vector machines [17] and SVR in particular [4].  

In forecasting with SVR, the input vector contains the lag 
structure of the time series, which results in dot products 
after combining them with the support vectors in the kernel 
function. The quadratic optimization problem is solved to 
determine Lagrangian multipliers *, ii αα  that are used to 
determine the weights *

i i iυ α α= −  [4]. The dot products are 
then weighted by *

i i iυ α α= − to calculate the one-step-ahead 
prediction value together with the threshold b [4]. The 
forecasting process can be visualised as in figure 2.  

B. Methodologies in specifying SVR parameters 
SVR is a data-driven and self-adaptive methods, which is 
capable of approximating linear and nonlinear functional 
relationships from data, unlike traditional model-based 
statistical methods [2, 4]. For applying ε-SVR in forecasting, 
a number of parameters must be determined a priori by 
determining the Costs C, the width of the epsilon-insensitive 
loss function ε, the kernel function and its kernel parameters 
γ [18] and the number and lags of independent variables to 
specify the input vector as a rolling window of fixed size 
over a time series. Recent experiments have shown that the 
forecasting performance of the ε-SVR is significantly 
impacted by an adequate a priori selection of their 
parameters [19], they are considered to be semi-parametric 

 
Fig. 2. Time series prediction with SVR 

 

rather then non-parametric methods, similar to neural 
networks. Hence they require an expert to determine a priori 
model parameters that impact on the forecasting capabilities. 

In order to determine the ε-SVR parameters various 
modelling heuristics exist. Gao, Gunn, Harris and Brown 
determine SVR parameters using a Bayesian framework for 
Gaussian SVR [20]. Chu, Keerthi and Ong follow another 
Bayesian approach, that combines the merits of SVR with 
the advantages of Bayesian methods for model adaptation 
[21]. Chang and Lin derived leave-one-out bounds for SVR 
parameters [22]. Heuristics can also lead to parameter 
combinations with inferior performance the even a simple 
parameter grid search [23], as in comparing a grid search 
with a Bayesian approach in Lin and Weng [24]. Momma 
and Bennett perform model selection by pattern search to 
reduce the number of parameter combinations that need to 
be tested [18, 25]. Kwok and Tsang [26] as well as Smola, 
Murata, Schölkopf and Müller [27] determine the parameter 
ε  as a linear dependency on the noise of the training data, 
which requires a priori knowledge of the noise level [22]. In 
contrast, Cherkassky and Ma analyse the parameter 
interaction to limit the number of relevant parameters. The 
suggest that for a given ε , the value of C has only 
negligible effects on the generalization performance as long 
as C is larger than a certain threshold that can be determined 
from the training data [18].  

A simple method to determine suitable ε-SVR parameters 
for each time series follows a systematic grid search over the 
parameter space [23, 28]. Instead of evaluating every 
possible parameter combination, which would be intractable 
for parameters of interval scale, a grid using equidistant 
steps in the parameter space limits the computational effort. 
However, different grids are applicable, using linear step 
sizes, exponential increasing sequences as in Hsu [23] or 
Luxburg [29] or logarithmic sequences as in Chang and Lin 
[22]. In addition, stepwise refinements of the grid size in 
parameter space are feasible, leading to an analytically 



 
 

 

simple yet computationally expensive parameter selection 
approach. In this study we seek to explore the simple grid-
based approach, using a brute-force, exhaustive enumeration 
of a representative parameter space. 

III. EXPERIMENTAL DESIGN OF NAÏVE SVR 

A. Specifying SVR input vectors 
The forecasting accuracy of any method depends largely on 
providing adequate input information to learn from. In time 
series forecasting this takes the form of specifying 
significant timed lags of the dependent variable yt-n and 
excluding irrelevant ones, hence determining the length of 
the input vector. Multiple methods exist in specifying input 
vectors, based on simple heuristic rules, statistical 
autocorrelation analysis to determine the order of 
autoregressive (AR), integrated (I) and moving average 
(MA) processes or mixed ARIMA-processes of lagged 
realisations of the dependent variable [2] or using spectral 
analysis to detect multiple overlying seasonal patterns. To 
pursue a naïve modelling approach we select a simple 
heuristic decision rule based on the observation interval of 
the time series, using a constant lag structure of the past 12 
monthly observations in a year to account for possible 
seasonality of the months or quarters. The same lag structure 
was used for all 111 time series, despite the possibility of 
different lag structures for different time series, the necessity 
to include 13 lags for seasonal integrated autoregressive 
processes SARIMA(p,d,0)(P,D,0)s or the approximation of 
MA processes of SARIMA(0,0,q)(0,0,Q)s. by extending the 
input vector to multiples of the yearly seasonality.  

B. Data Pre-Processing  
The dataset contains 111 monthly time series from the 
complete dataset of the NN3 competition. Of these series 11 
monthly time series form a reduced data subset of the 
competition. The NN3 time series are heterogeneous, show 
various seasonal and non-seasonal patterns and noise levels, 
and vary in length between 49 and 126 observations. The 
prediction objective is to forecast the next 18 observations in 
a multiple step ahead forecast as accurately as possible.  
Data is scaled before training in order to speed up the 
computation process and to avoid numerical difficulties 
[23]. Each time series observation xt is linearly scaled as zt 
into the interval of [-0.5; 0.5], using the scaling function of 
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on the minimum xt min and maximum value xt max of xt on the 
training and validation set and by applying headroom of 
50% to avoid possible saturation effects of the nodes on 
instationary time series patterns in the unseen test data. 

C. SVR training and parameters  
We employ a simple grid search of costs C, epsilon ε and the 
parameter of a Gaussian kernel γ with exponentially 

growing sequences that cover a vast range of value 
combinations. Figure 2 shows an example grid with 
exponentially growing sequences.  

 
Fig. 2. A grid with exponentially growing sequences 

 

However, employing a grid search methodology requires the 
setting of valid and reliable lower and upper parameter 
bounds that define the search space of the grid.  

The regularisation parameter C determines the trade-off 
between the model capacity, reflected in the flatness of the 
approximated function, and the amount to which deviations 
larger then the ε-insensitive tube are tolerated [13]. A larger 
value for C reduces the error contribution but yields a more 
complex forecasting function that is more likely to overfit on 
the training data [18]. Hence it appears reasonable to 
evaluate parameters of C between a very small lower bound 
to create SVR-models with simple, flat functions to handle 
strong noise and a large upper bound to also consider SVR-
models that describe more complex time series structures. In 
other experiments, Chang and Lin used parameter bounds 
between e-8≤C≤e8 [23] while Hsu and Lin used bounds 
between 2-2≤C≤212 [30]. To follow an exhaustive approach, 
we set the lower bound to Cl=2-10 and the upper bound to 
Cl=216, exceeding the parameter range of previous 
experiments in order to provide the capability for a 
sufficient trade off for the different time series patterns. This 
implements an exponential grid with 36 steps of 20.5 to 
evaluate the parameter values of C=[2-10,2-9,5,…,216].  

The ε-parameter controls the size of the ε-insensitive tube 
and hence the number of support vectors and the error 
contributions of observations lying outside it [9, 15]. As ε 
corresponds to the level of noise in a time series, large 
values of ε allow an approximation of the structure of the 
underlying functional relationship of a time series with high 
noise as opposed to overfitting to the noise. Chang and Lin 
[22] use margin values of e-8≤ε≤e-1, with Lin and Weng 
using similar margins [24]. We extend these search spaces 
and use a lower margin of 2-8 with an upper margin of 20. 
We use exponential grid steps of 20.25, evaluating 32 
parameter values of ε=[2-8,2-7,75,…,20] for different noise. 

The kernel parameter γ defines the width of the kernel to 
reflect the range of the training data in feature space and 
therefore the ability of an SVR to adapt to the data [17, 18, 
31]. Chang and Lin [22] used parameter bounds of e-8≤γ≤e8 



 
 

 

and Lin and Weng [24] used bounds of 2-8≤γ≤21. We select 
an exponential grid with steps of 20.5, evaluating 30 
parameter values of γ=[2-12,2-11,5,…,20] to provide feasible 
kernel parameters for the scaled time series data.  

In total we evaluate 43,725 parameter combinations for 
each time series. As a grid search of this magnitude is a time 
intensive approach of parameter selection, we reduce the 
training time by applying a shrinking technique to speed up 
the decomposition used to solve the SVR optimization 
problem. It iteratively removes bounded components, so that 
reduced problems are solved [28, 30]. See Fan Chen and Lin 
for details [32]. To summarise, a total of 4,853,475 ε-SVR 
candidate models are computed on the 111 time series using 
YALE [33] and the LIBSVM libraries [28] 

D. Selection of SVR candidate models  
Depending on the combination of model parameters, a SVR 
is capable of approximating the underlying data generating 
process of a time series to different degrees of accuracy, 
permitting overfitting to the training data though the 
combination of sub-optimal parameters and therefore 
limiting its ability to generalize on unseen data [4], see 
figure 3.  

 
Fig.3. The difference between overfitting and generalization 

 

Hence the selection of a robust SVR candidate for each time 
series requires particular attention. To select the ‘best’ SVR 
candidate model from the different parameter setups, which 
are 43,725 per time series in this study, each time series is 
split into two subsets of 65% training data and 35% 
validation data [34]. Considering the length of the series the 
validation set is selected to roughly match the undisclosed 
test set in length, serving as a first estimate of a quasi-out-
of-sample accuracy. Each candidate ε-SVR is trained 
exclusively on the training data and is selected on its 
validation dataset. 

As only a short validation dataset is used for selecting the 
best candidate model for that time series, overfitting on the 
validation set frequently occurs if the validation subset does 
not adequately represent the true data generating process, 
which cannot be expected from small data sub-samples. 
Multiple approaches are feasible to avoid overfitting to the 
validation data set in model selection and to derive an 
unbiased estimator on unseen data. Comprehensive methods 
for data sub-sampling may be considered, including k-fold 
cross validation using different numbers of data folds or 
leave-one-out cross validation [35] To adhere to the naïve 

approach, while avoiding the grave mistake of selection of 
the best candidate model on the training data itself, we 
compute only single cross-validation errors and select the 
best model on the prefixed validation set. So all SVR 
candidates are parameterised exclusively on the training set, 
while the forecasting capability of the models is evaluated 
on the validation set and the candidate model with the 
lowest validation error is selected [36, 37]. 

Empirical simulation experiments have proven that error 
measures play an important role in calibrating and refining, 
model selection and ex post evaluation of competing 
forecasting models in order to determine the competitive 
accuracy and rank candidate models [36, 38]. Although they 
should be selected with care, we apply the quadratic error 
measure of the root mean squared error (RMSE), weighting 
each error deviation by the quadratic distance using: 
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Using quadratic error measures emphasises the influence of 
large forecast errors over small ones, e.g. from outliers, and 
should normally be avoided in the evaluation of model 
performance, but according to Armstrong and Collopy [38] 
practitioners and academicians used the RMSE frequently to 
draw conclusions about forecasting methods. Furthermore, 
they are frequently used due to their relation with 
conventional least-squares-estimators and their mathematical 
simplicity. This is also noteworthy, as the selection criteria 
diverges from the final forecasting error metric in the NN3 
competition, which is using a symmetric mean absolute 
percent error (SMAPE) [38, 39]: 
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The model with the lowest RMSE on forecasting 18 t+1 
step-ahead forecasts on the validation set is selected and 
applied to predict the next 18 data points as multiple-step-
ahead forecasts t+1, t+2, …, t+18 on the NN3 competition 
data sets. It is apparent, that this gives rise to another 
mismatch, as a method may show adequate accuracy on 
forecasting one step into the future, yet another set of 
parameters may perform better in forecasting multiple steps 
ahead. As this is commonly not aligned in previous studies, 
we comply with this malpractice in the naïve methodology, 
introducing further potential for misspecification errors.  

No true observations for the final 18 data points of the 
NN3 competition are available, so no evaluation of out-of-
sample accuracy may be conducted. More thorough 
evaluations of the naïve methodology would be feasible by 
splitting the available data into training, validation and test 
set, but these are not conducted due to the obvious sub-
optimality of the naïve approach. This limits the following 
investigation to an analysis of correlation between training 
and validation data and the ranges of ‘optimal’ parameters. 



 
 

 

IV. EXPERIMENTAL RESULTS 
To derive insight about the potential quality of the estimated 
SVR models, we investigate the one-step-ahead predictions 
for all time series on training and validation data using the 
SMAPE. Table 1 shows the SMAPE for the 111 NN3 time 
series including the 11 time series from the reduced dataset 
from NN100 to NN101. An analysis of the errors on training 
and validation sets indicates various problems of high errors, 
overfitting in the training process as indicated by 
significantly smaller errors on the training data then on the 
validation data set, and overfitting to the validation set, 
indicated by significantly smaller errors on the validation set 
then on the training set. The numerical analysis therefore 
confirms that various misspecifications may have occurred, 
which however cannot be attributed to a particular model 
choice or the uncontrollable structure dataset. To support the 
numerical evidence of the expected low validity and 
reliability of the naïve benchmark approach, we conduct a 
visual inspection of the highlighted time series to validate 
the assumptions.  

The visual inspection confirms that the SVR models for 
time series NN009, NN010, NN019 and NN059 overfit on 
the training data, showing limited generalisation through 
significantly lower accuracy on the validation set. Time 
series NN40 to NN49 show extreme noise and no apparent 
generalisation of the underlying structure. For most of these 
time series the SVR model is either very flat or significantly 
overfitted to the noise. Time series NN022, NN037, NN043, 
NN054, NN063 and NN069 show a significant error 
increase on the validation set, which can be explained by 
visual apparent outliers in the validation set. Time series 
NN093 and NN009 show a structural break, explaining the 
high forecasting error. The SVR models for time series 
NN027, NN029, NN043 and NN045 are very flat and hence 
explain the limited fit to the noisy time series. 

V. CONCLUSIONS 
We compute a naïve heuristic, making use of most 

frequent mistakes in SVR modeling for time series 
prediction in order to establish a lower bound for support 
vector accuracy in the NN3 forecasting competition. The 
naïve heuristic evaluates an extensive grid search of 43,725 
combinations of cost parameters, epsilon-parameters and 
kernel parameters for each time series, calculating a total of 
4,853,475 ε-SVR candidate models. In aiming for a lower 
bound, we neglect the necessity to identify a significant 
input vector per time series, evaluate different scaling 
schemes, evaluate different kernel functions, control for 
overfitting in model selection form the validation data using 
k-fold cross-validation, conducting model selection and 
evaluation on a representative error metric for the ex post 
evaluation of the performance or the true cost of the 
decision, and computing and evaluating one step ahead 
predictors instead of multiple-step-ahead predictors as 
required in the final test evaluation. The naïve heuristic 
identifies a set of parameters for each of the 111 time series, 
which are subsequently used to forecast the next 18 steps 
into the future for unseen data.  
While we hope to demonstrate the general ability of SVR to 
forecast linear and nonlinear time series with seasonal and 
non-seasonal patterns, the discussion of the naïve heuristic 
methodology also aims at drawing attention to the most 
common mistakes in SVR as well as neural network model 
building. Further research, systematic evaluations of 
forecasting accuracy on multiple empirical time series are 
required to establish a valid, reliable and robust 
methodology for automatic SVR model building. Until then, 
the naïve grid search heuristic may serve as a warning 
benchmark which pitfalls to avoid in SVR model building. 
 
 
 

TABLE 1 
SMAPE PREDICTION ERROR ON TRAINING AND VALIDATION SET OR THE 111 SVR MODELS ON THE NN3 COMPETITION DATASET 

Series Train Valid Series Train Valid Series Train Valid Series Train Valid Series Train Valid Series Train Valid 
NN001 7.72 8.17 NN021 6.84 15.60 NN041 13.60 11.90 NN061 2.50 2.04 NN081 3.19 4.60 NN101 0.55 0,49
NN002 7.14 9.11 NN022 7.00 25.80 NN042 12.50 12.40 NN062 7.05 7.75 NN082 0.41 0.47 NN102 3.22 2,50
NN003 7.15 10.62 NN023 8.51 10.41 NN043 25.70 32.20 NN063 2.62 2.47 NN083 1.84 2.00 NN103 18.5 12,46
NN004 6.65 7.49 NN024 16.4 17.34 NN044 39.10 39.50 NN064 1.53 1.66 NN084 1.33 1.53 NN104 5.52 5,40
NN005 7.82 5.73 NN025 58.1 47.27 NN045 29.90 27.70 NN065 4.21 4.73 NN085 3.20 11.11 NN105 0.69 0,70
NN006 5.07 8.24 NN026 24.7 32.29 NN046 23.90 31.75 NN066 1.23 1.81 NN086 1.93 1.16 NN106 2.07 3,38
NN007 14.3 16.50 NN027 17.9 17.33 NN047 21.30 32.04 NN067 6.38 4.69 NN087 3.83 2.31 NN107 1.29 1,21
NN008 14.3 16.50 NN028 8.14 9.70 NN048 13.40 14.40 NN068 1.25 2.75 NN088 3.85 4.26 NN108 8.58 9,35
NN009 2.05 9.13 NN029 30.00 20.44 NN049 50.10 33.16 NN069 8.20 10.22 NN089 2.14 1.15 NN109 3.66 2,54
NN010 7.47 14.87 NN030 3.67 7.24 NN050 7.92 12.75 NN070 2.18 1.40 NN090 1.23 0.87 NN110 11.50 12,70
NN011 10.1 10.51 NN031 58.00 56.37 NN051 1.80 1.93 NN071 4.35 4.01 NN091 0.18 0.28 NN111 3.92 4,82
NN012 7.67 9.28 NN032 14.9 12.04 NN052 1.53 1.28 NN072 2.51 1.98 NN092 0.34 0.25    
NN013 7.93 8.74 NN033 12.2 15.29 NN053 2.72 1.83 NN073 7.16 5.06 NN093 18.70 11.74    
NN014 7.70 5.65 NN034 8.82 13.49 NN054 2.72 1.83 NN074 2.10 1.67 NN094 1.45 2.26    
NN015 6.74 7.72 NN035 12.1 12.79 NN055 1.84 1.70 NN075 1.24 1.19 NN095 5.46 5.02    
NN016 5.08 6.30 NN036 8.86 12.89 NN056 0.95 1.43 NN076 3.43 4.67 NN096 15.10 19.61    
NN017 6.66 6.44 NN037 9.57 14.93 NN057 0.43 0.45 NN077 0.39 0.31 NN097 3.49 2.87    
NN018 8.65 9.92 NN038 18.1 13.98 NN058 1.05 0.92 NN078 5.54 4.10 NN098 4.60 4.16    
NN019 4.35 14.44 NN039 8.44 6.09 NN059 4.79 2.76 NN079 2.26 2.14 NN099 5.75 5.36    
NN020 12.90 17.40 NN040 9.77 9.07 NN060 1.01 1.03 NN080 0.61 0.71 NN100 2.95 4.24    

 High error e, with evalid, etrain>x;  Overfitting on the trainng set, with evalid>etrain;  Overfitting on the Validation set for model selection, with evalid<etrain 
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