
 1

Forecasting using Neural Networks :
A new approach to dynamic

architecture network

Georgia Papadaki*, Fotios Amaxopoulos 1,*

*Tanaka Business School, Imperial College
London, Exhibition Road, London, SW7

2AZ

1. Introduction

During the decades researchers across the
globe have used various techniques in order
to achieve forecasting capability of time
series. From a simple ARIMA model to
Artificial Intelligence approaches dispute still
divides the science community regarding
which method can yield the best forecast.
Amid these controversies Neural Networks
which where first proposed for forecasting in
the late 1980�s - early 1990�s, still dominate
and continue to gain more territory in our
collective consciousness as an efficient
technique to predict the future.

Despite the various Neural Network
models that already exist in the contemporary
bibliography, the answer to the question
which one of those performs better still elude
us. The most commonly used however is
Artificial Neural Network with feed forward
back propagation algorithm (FFBP) which
has been a subject of research in order to test
its efficiency more than any other model. By
some recent estimates it accounts for the 90
percent of all Neural Network applications
and in particular occasions it performed
adequately well. Its architecture initially
involves empirical trial and error testing
regarding the number of neurons in each
layer as well as the number of layers that will
be used. The inputs as well as a set of
weights that are allocated to each separate
neuron, are propagated forward to the
neurons of the consecutive hidden layer.

1 Corresponding author, Tel +447946947570, e-mail:
Fotios.amaxopoulos05@imperial.ac.uk

There, under the application of an activation
function they are forwarded to the following
`the optimal weights that minimize an error
function (usually Square Error Function) is
gradient decent or other alternatives like
conjugate gradient. Of course a variety of
other training approaches are implemented
until a certain tolerance error value is
reached. Although FFBB Neural Networks
are a universal functional approach, there are
some shortcomings as the model�s efficiency
to avoid multiple local minima.

The development of other alternatives
including Hopfield networks (Recurrent),
Probabilistic, Fuzzy Logic, Self - Organized
Networks etc, also share a part in the
endeavor to make more accurate predictions
under a Neural Network scope. In this paper
however, in an attempt to approach one of
the most contemporary forecasting model
techniques, we implemented the Dynamic
Architecture for Artificial Neural Networks
(also known as DAN2). It was first
developed by M.Ghiassi, H.Saiane (2005)
and then in 2006 M.Ghiassi, H.Saiane,
D.K.Zibra also implements it to number of
commonly used in experiments time series.
This model completely diverges from the
common and it was a source of inspiration in
our search for superior outcomes.

2. Model description

 The intuition behind DAN2 is based upon
collecting and propagating gathered
Knowledge as a whole rather than
propagating the outputs of the activation
functions of each individual neuron to the
next layer. In this concept DAN2 can be seen
as a simple feed forward neural network
comprised of

 2

an input layer, hidden layers and an output
layer. The difference however between them
is that in the latter we usually have to define
not only the proper input variables but also
the number of hidden layers as well as the
number of neurons in each layer. In DAN2
however, the number of neurons is fixed and
the optimal number of hidden layers is found
dynamically according to some minimum
optimal criteria that have to be reached. Thus
what is only required from the researcher is
to identify the input variables. Throughout
the years of experimentation a vast number
of papers have been published in an attempt
to set a certain framework, based on
statistics, in order to identify proper inputs
and architecture of a neural network. Some
conspicuous examples are Medeiros et al.
(2006), Swanson and White (1997), Refenes
and Zapranis (1999) and so many others that
attempted to clear the multidisciplinary
nature of the subject. Despite all of these
attempts there is a different point of view, as
lots of other researchers regard input variable
selection procedure actually as �an art� and
thus it is a matter of pure experiment (trial
and error) rather than an implementation of a
theory in order to meet a number of certain
criteria.

 Encapsulating the architecture of DAN2,
we can describe it as follows: first and
foremost the inputs are disseminated to the
network as a matrix, i.e. simultaneously,
rather than one at a time providing in this
way �a training environment that ensures
monotonically increasing learning�2. After
that this collective matrix is propagated to the
hidden layers. Under the general concept of
DAN2, at each layer we define the linear and
the non-linear relationships of the data
separately. We combine and forward them to
the next layer as a whole accumulated
knowledge, and then to the next one, until we
reach the output when our criteria for optimal
error tolerance are met. More precisely, each

2 Ghiassi and Shaidane 2005, �A dynamic architecture for
artificial neural networks, Neurocomputing 63 p.397-413

hidden layer of DAN2 has a fixed number of
neurons, which are four. The first is the so
called �threshold unit� or C, which equals 1
and plays the role of the constant in regular
regression by OLS. The main neuron is the
�Current accumulated Knowledge element�
or CAKE and gathers knowledge of all
previous layers. The third and the fourth
neurons are the �current residual non-linear
elements� or CURNOLE and have as a
purpose to gather the non linear relationships
of the data using as inputs all outputs of the
previous layers.

 The training procedure of DAN2 is
similar to the backpropagation idea. The
network is trained until an error function
(usually the MSE or the SSE) falls under an
acceptable value. Firstly, in a special layer,
CAKE neuron captures the linear relationship
between the inputs and the desired outputs,
under the standard OLS concept. If the error
criteria are met then the training stops and we
have a linear relationship between the inputs
and the output. In general the CAKE neuron
combines linearly previous layers� CAKE,
CURNOLE and C reassuring in this way that
already gained Knowledge is not lost but
readjusted and carried until the output neuron
is reached. After the input data have been
linearly transformed in the fist CAKE node,
they are transformed in the subsequent nodes
through an algorithm in order to capture the
nonlinearities of the process. The algorithm
that is used by the creators of DAN2 is a
trigonometric function which is represented
as follows:

 3

 Cosine (µαi +θ)

where αi is an angle between the record i and
the reference vector R, used to train the
network and is updated at each subsequent
node. It represents the transformed and
normalized inputs while µ represents a
coefficient and θ represents constant. In order
to facilitate our calculations we replace θ
with the following trigonometric equation:

A Cosine (µαi) + B Sine (µαi) .

The above equation is used by the
CURNOLE nodes facilitating the reduction
of the nonlinear parameters from one to two.
If the equation does not sufficiently
represents the nonlinearities that exist, an
new layer with an extra node is added to the
process as well as one more Cosine (µαi +θ)
equation for this extra node. Taking into
account what has already been mention
above DAN2 differs from each contemporary
opponents as its architecture is depended
upon the complexity of the problem and is
defines dynamically. The general equation
that represents the combination of the
elements of each layer k in order to produce
the output is :

Fk = αk + bkFk-1(Xi) + ckGk(Xi) + dkHk(Xi),

where Xi is the n independent input record
 Fk is the output of layer k
 Gk(Xi) = Cosine (µkαi)
 Hk(Xi) = Sine (µkαi) and
 αk, bk, ck, dk , µk are parameters for
optimization at k iteration.

 Our contribution to the above presented
model will be the implementation of a more
efficient algorithm in order to facilitate the
estimation of the nonlinear parameter µk.
While the first four parameters can be
estimated by standard OLS, the nonlinear
parameter will be estimated using the
Conjugate Gradient algorithm. Additionally
the Simulated Annealing algorithm will be

used as a medium to avoid the classical
problem of local minima. In brief, the
obstacle of multiple minima rather than one
global minimum is widely encountered in the
neural network optimization procedures and
that is particularly due to our decision when
the gradient is zero. In this concept we
should never prefer convergence based on
small gradients but those based on upward
trends of the gradient. Simulated Annealing
assist an optimization by �randomly
perturbing the independent variables (weights
in the case of a neural network) and keeping
track of the best (lowest error) function value
for each randomized set of variables.�3
Firstly we use a random number generator to
produce as many as possible iterations in
order to find those weights that give the
minimum error, we keep track of those
weights and we use them as a center from
which perturbation for the next random
number generator will begin with lower
standard deviation this time.
 Concerning the final model architecture
DAN2 in contrast with the usual feed
forward neural networks adds dynamically
hidden layers of four neurons each until a
specified accuracy measure or a certain
number of iterations are reached. Moreover
due to the dynamic nature of the model we
add two further training stopping criteria so
as to avoid under-fitting (alternatively under-
training) or over-fitting (over-training). In the
first case in order to avoid such a problem we
set stopping criterion ,ε1 = (SSEk - SSEk+1) /
SSEk ≤ ε1

* . This is to reassure that adding
our neural network has the optimal number
of layers and none redundant that could
increase the overall prediction error or would
make the process slower without adding any
further Knowledge. Regarding the other more
commonly encountered problem in
forecasting using neural networks, this of an
over-fitted model, there are an additional
criterion set to overcome it. We use ε2
=│MSET - MSEv │/ MSET ≤ ε2

*,where �T�

3 Timothy Masters,1993, �Practical Neural Network
Recipes in C++�, p.119

 4

subscript stands for training and �V� for
validation. The training procedure stops
when the above criteria are fully met.
Something that worths to be mentioned is
that we should be extremely careful
regarding the desired level we set for ε1 and
ε2. This is because if this level is too low we
will definitely reach it too soon and the
whole model should then be reconsidered
setting this time a new level for them.

3. Model evaluation and results

 For the evaluation of our model we will use a
number of the most classical and widely used
error functions like Mean Square Error, Mean
Absolute Error, Mean Absolute Deviation and
finally in the context of the competition�s
requirements we will add Symmetric Mean
Absolute Percent Error. Our results indicate a
promising out-performance of the statistical
methods mentioned even in problems involving
long horizons and inadequate number of
observations to forecast.

References

Bishop C.M., 1995, Neural Networks for Pattern
Recognition, Oxford University
Press.

Ghiassi M., Saidane H., 2005 A dynamic
architecture for artificial neural
networks, Neurocomputing 63, 397�413.

Ghiassi, M., Saidane H., Zimbra D., 2005, A
dynamic artificial neural network
model for forecasting time series events,
International Journal of Forecasting 21, 341�
362.

Ghiassi, M., Zimbra D., Saidane H., 2006,
Medium Term System Load Forecasting with a
Dynamic Artificial Neural Network Model.,
Electric Power Systems Research 76, 302�316.

Masters, T., 1995, Advanced algorithms for
neural networks : a C++ sourcebook, New York,
NY, Wiley.

Masters, T., 1993, Practical neural network
recipes in C++, San Diego, London , Academic
Press.

Medeiros M.C., Teräsvirta T., Rech G., 2002,
Building Neural Network Models for Time
Series: A Statistical Approach, Journal of
Forecasting, 25, 49�75.

Swanson NR., White H., 1997, A model
selection approach to real-time macroeconomic
forecasting using linear models and artificial
neural networks, Review of Economic and
Statistics, 79, 540�550.

Welstead, S., 1994, Neural network and fuzzy
logic applications in C/C++, New York,
Chichester, Wiley.

Zapranis A., Refenes A-P., 1999, Principles of
Neural Model Identification, Selection and
Adequacy: With Applications to Financial
Econometrics. Springer-Verlag, Berlin.

