

Abstract—This paper presents/summarizes techniques and
results for the Neural Network & Computational Intelligence
Forecasting Competition organized by S. Crone and supported
by SAS and IIF. The competition involves forecasting a large
set of time series using methods of neural networks and
computational intelligence technologies. The primary goal of
the competition is to identify the best strategies in developing
neural network models for forecasting a large number of time
series. In this paper, a multiple-model fusion scheme is
examined from a point of view of forecasting a large number of
time series and for the purpose of achieving more robust
forecasting performance.

I. INTRODUCTION
Despite over 15 years of research and more than 2000
publications on artificial neural networks for forecasting,
neural networks have not yet been established as a valid and
reliable forecasting method in time series forecasting,
especially in situation where a large number of time series
are involved [1]. The primary purpose of the competition is
thus to identify the “best practice” methodologies of neural
networks for time series forecasting by evaluating a set of
consistent neural network methodologies across a
representative set of time series.

Conventional design for time series forecasting models
focuses on identifying the “single best” forecasting model
from a collection of different models. Recent studies have
demonstrated that for most real-world problems, the single
model design often time cannot be designed to achieve the
desired performance. And multiple models fusion, by
leveraging complimentary information from different
models can be more effective in achieving more robust
forecasting performance. As a result, multiple models
systems have gain more and more research interests in
recent years. For example, neural network ensembles were
used for weather forecasting [2] and for economic
forecasting [3].

In the ISF05 time series competition, the author used
neural network ensemble for forecasting. For the 2 time
series data provided in the competition, neural network
ensemble showed promising results. In this paper, we
extended neural network ensemble to multiple level model
fusion, where a series of generalized regression neural
networks are used for time-series forecasting. In addition,
we focus our effort on designing a multiple model

Dr. Weizhong Yan is with GE Global Research Center, Niskayuna, NY
12309, USA. phone: 518-387-5704; fax: 518-387-6104; e-mail: yan@
crd.ge.com.

forecasting system in an automatic fashion so that the model
building process can be applied to a large number of time
series.

The reminder of the paper is organized as follows. Section
II describes the datasets used for the competition.
Characteristics of the dataset and the challenges of
forecasting are also highlighted. Our multiple-model
forecasting scheme is presented in Section III. Forecasting
results are given in Section IV. Section V concludes the
paper.

II. PROBLEM DESCRIPTIONS

A. The datasets
Two datasets are provided for competition. Dataset A is a

complete dataset consisting of 111 monthly time series
drawn from homogeneous population of empirical business
time series. Dataset B, on the other hand, is a subset of
Dataset A, which consists of 11 time series. Participants can
submit their results for either or both of the datasets. The
time series in the two datasets have different length of
historical data points. Generally speaking, Dataset A has
about 5 years, 60 months of data points, while Dataset B has
about 10 years, 120 data points. All of the series start at
January. For each of time series, we are required to
forecasting 18 months of values based on the given
historical data points.

0 12 24 36 48 60 72 84 96 108 120
4000

4500

5000

5500

6000

Fig. 1 – Time plot of the time series sample 1

0 12 24 36 48 60 72 84 96 108 120
0

2000

4000

6000

8000

10000

12000

14000

16000

Fig.2 – Time plot of the time series sample 2

Multiple-Model Fusion for Robust Time-Series Forecasting
Weizhong Yan

0 12 24 36 48 60 72 84 96 108 120
2500

3000

3500

4000

4500

5000

5500

6000

6500

Fig.3 – Time plot of the time series sample 3

0 12 24 36 48 60 72 84 96 108 120
0

1

2

3

4

5

6 x 104

Fig.4 – Time plot of the time series sample 4

Figures 1 thru 4 show samples of the time series from

Dataset B. From Figures 1 thru 4, we can make following
observations about the time series in the datasets.

• Series are generally seasonal - some stronger than
other (Fig.4 for example).

• Most series contain a certain level of trend (e.g.,
Figs. 1 and 4). The trend may not necessarily be
linear.

• Series may contain outliers (Fig.2 for example).
• Data in a series may not be normally distributed.

Fig. 4, for example, shows a skew data
distribution.

• Almost all time series are non-stationary, i.e., with
varying mean, or variance, or both.

B. Challenges and modeling strategies
The above-mentioned observations for the series are not

particularly unusual for real-world time series. There are
known methods, for example, time plots, for identifying the
features of a time series. However, most of these feature
identification methods are manual and ah-hoc, thus an
automation of these methods is needed for the competition
so that they can be efficient in dealing with a large number
of time series. There are also text book approaches, e.g., the
Boc-Cox transformation, for treatment of the features (trend
and seasonality). However, the effectiveness of these
treatment measures is highly dependent on the time series.
That is, no single treatment measure works well for all time
series. One of the challenges we are facing in this
competition is thus on how to adopt the forecasting
modeling process that has been successfully used for single
or small number of time series to a situation where a large
number of time series are involved. The strategies for

achieving superior forecasting performance in the
competition is to develop a so-called automatic forecasting
method that is “adaptive” to different time series such that a
robust forecasting performance is always achieved for all
time series.

III. OUR APPROACH
Geared towards developing an automated forecasting

scheme that not only gives superior forecasting
performance, but also works effectively for a large number
of time series, in model building we focus on two equally
important parts, preprocessing and modeling. These two
parts are explained as follows.

A. Preprocessing
Preprocessing of time-series includes feature

identification and feature treatment. Features of a time series
refer to trend, seasonality, outliers, and discontinuities
[Chatfield (2004)]. These features, especially outliers and
discontinuities, complicate modeling and negatively affect
forecasting performance. Correctly identifying these features
so that a proper treatment measure can be taken is crucial in
time series modeling and forecasting. Feature identification
in our system is to automatically determine if a time series
contains such features based on historical observations. If
any of the afore-mentioned features is determined to be
present in a series, treatment of such features is required.
The treatment includes modifying outliers, imputing missing
observations, and removing or modeling trend and
seasonality effects. In this study, we focus on outlier
removal and global trend detection. More specifically we
like to have a general scheme that not only can automatically
identify and treat the features (outlier and trend), but also is
applicable for all time series concerned.

We define an outlier as the point whose value is great

than 4 times of the median of the 3 consecutive points
before and after. That is, ix is an outlier if

),,(4 123 −−−⋅≥ iiii xxxmedianx and
),,(4 321 +++⋅≥ iiii xxxmedianx

Once an outlier is found, we replace its value with the
average value of the points that are immediately before and
after the outlier.

In this study we are interested in identify large trends (we
call them “global trends”). For example, the sample time
series shown in Figures 1 & 3 are considered to have global
trends while the sample time series shown in Figure 2 & 4
are not. To determine if a time series has a global trend, we
split the series into a series of 12-point-window segments
and calculate means and standard deviations of these
segments. Let the means and the standard deviations of n
segments be },...,{ 21 nmmm=m and },...,{ 21 nσσσ=σ . We

define
∑ =

−
= n

i in

GTI
1

1

))min()(max(
σ

mm as the global trend index.

If 3≥GTI , the time series has global trend. Otherwise it
does not.

We take different strategies for time series with and without
global trends in model building. For time series without
global trend, we directly use the raw values as model inputs.
On the other hand, we take first difference for time series
with global trend as the simplest way to remove the trend.

It is worthy pointing out that even though we only take
actions towards outliers and trend, our preprocess step is
fully automated and can be applied to all 111 time series
without human intervention.

We don’t take particular treatment for seasonality in
preprocessing step. We take care of the seasonality effort in
modeling step.

B. Modeling
We propose a multiple-model fusion based forecasting

system. In our forecasting system, there are 2 levels of
multiple-model fusions. In the first level, we use 18 models,
each of which is to perform one of 18 out-of-sample
predictions. That is, the ith model performs i-step-ahead
forecasting, where i =1,2, … 18. Figure 5 illustrates how the
18 models work.

Figure 5: The first level of multiple models
(18 models for 1-to 18-step ahead prediction)

We use the generalized regression neural network

(GRNN) for our base model. GRNN is a universal
approximator that can approximate a continuous function to
an arbitrary accuracy, given a sufficient number of neurons.
As shown in Figure 6, a typical GRNN has two layers of
artificial neurons. While the first layer consists of radial
basis neurons the second layer consists of neurons with a
linear transfer function. First layer weights are simply the
transpose of input vectors from the training set. The

weighted input for the first layer neurons is the distance
between the input vector and its weight vector. The neuron’s
output is the radial basis function of the input scaled by the
spread factor. Therefore, if a neuron weight is equal to the
input vector, the distance between the two is zero, which
gives an output of 1. This type of neuron gives an output
characterizing the closeness between input vectors and
weight vectors (training inputs).

Figure 6: A typical GRNN architecture

A GRNN has one tunable parameter, spread factor. When

the spread factor is small the radial basis function is steep so
that the neuron with the weight vector closest to the input
will have a much larger output that other neurons. The
network tends to respond with the target vector associated
with the nearest design input vector. As the spread factor
increases, the radial basis function’s slope gets smoother and
several neurons may respond to an input vector. The
network then acts like it is taking a weighted average
between target vectors whose design input vectors are
closest to the new input vector. As spread factor gets larger
and larger, more and more neurons contribute to the average
with the result that the network function becomes smoother.

Figure 7: The second level of multiple model fusion -For each of the 18
models in the first level, three individual GRNNs with different spread

factors are used and the predictions of these individual GRNNs are fused

As can be seen from above, spread factor of GRNN is one

of the important factors affecting the prediction performance
of GRNN. Unfortunately there is no unique spread factor
that works for all problems. Moreover, there is no analytical
way to accurately determine the spread factor. For a given
problem, experimental determination of spread factor is an
important part of design efforts of GRNN. For time series
forecasting concerned in this study, since we are dealing
with a large number of time series, we can’t afford to do
experiments on determining the best spread factor for each
individual time series. We could include an optimizer (e.g.,

Model #1

Model #2

Model #3

Model #18

…

1 2 3 18

…

…

…

…

…

network
input network output

Model #1

Model #2

Model #3

Model #18

…

1 2 3 18

…

…

…

…

…

network
input network output

…

GRNN (s=0.10)

GRNN (s=0.15)

GRNN (s=0.20)

mean

input predicted
…

GRNN (s=0.10)

GRNN (s=0.15)

GRNN (s=0.20)

mean

input predicted

ΣΣ

GA) as a wrapper to determine the optimal spread factor for
each individual time series. The objective function of the
optimization could be the performance measure, i.e., the
Symmetric mean absolute percentage error (SMAPE) of the
testing samples. However, due to time limitation, in this
submission, we do not adopt the optimization scheme for
determining the spread factor. Instead, for each of the 18
models we use three GRNNs, each of which uses one of the
three pre-defined spread factors, 0.10, 0.15, and 0.20. The
prediction is then the average of the outputs of the three
networks. Figure 7 illustrates the concept. Our thinking here
is that leveraging different spread factors would be our best
strategy in achieving overall good performance for all 111
time series concerned without identifying specific spread
factor for each individual time series. Certainly the
leveraging strategy we adopt here would give us a less
superior prediction performance comparing to using
optimization scheme. In future work, we would like to
explore the optimization schemes to see how much
improvement we can gain in terms of prediction
performance.

Inputs to all GRNNs are kept the same, that is, the past

consecutive 12 points, xt-1, xt-2,…, xt-12, for all 111 time
series. Depending on weather or not the time series contains
global trend, xs can be raw values or the first difference (see
III-A for details).

For each time series, we reserve last 18 points for testing

and the remaining points for training set. We calculate the
Symmetric mean absolute percentage error (SMAPE) for
out-of-sample prediction of the 18 testing points. And we
use the SMAPE to gauge the model performance for

predicting the unknown 18 points.

IV. RESULTS

Figures 8 thru 11 show some forecasting results for
sampled time series.

V. CONCLUSION
In this paper, we presents/summarizes techniques and

results for the Neural Network & Computational Intelligence
Forecasting Competition organized by S. Crone and
supported by SAS and IIF. Geared towards developing an
automated forecasting scheme that not only gives superior
forecasting performance, but also works effectively for a
large number of time series, we propose a multi-level model
fusion scheme for time-series forecasting.

REFERENCES
[1] http://www.neural-forecasting-competition.com/motivation.htm
[2] B. Zhu and J. Lin, “Principal component analysis and neural network

ensemble based economic forecasting”, Proceedings of Chinese
Control Conference, Harbin, China, Aug., 2006, pp1769-72,

[3] G.P. Zhang and V.L. Berardi, “Time series forecasting with neural
network ensembles: an application for exchange rate prediction”,
Journal of the Operational Research Society, Vo. 32, No.6, June 2001,
pp652-664.

[4] M. Mohandes, “Support vector machine for short-term electrical load
forecasting”, International Journal of Energy Research, Vol. 26, No. 4,
pp335-345, 2002

Figure 8: Sample prediction result – case # 4

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000
In-Sample Prediction

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000
Case # 4 - SMAPE for testing = 5.0991

True
Predicted

Training points
True testing points
Predicted testing points
Forecasting

Figure 9 : Sample prediction result – case # 5

Figure 10 : Sample prediction result – case # 11

0 20 40 60 80 100 120 140
3500

4000

4500

5000

5500
In-Sample Prediction

0 20 40 60 80 100 120 140
3500

4000

4500

5000

5500
Case # 5 - SMAPE for testing = 0.31836

True
Predicted

Training points
True testing points
Predicted testing points
Forecasting

0 20 40 60 80 100 120 140
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500
In-Sample Prediction

0 20 40 60 80 100 120 140
2000

3000

4000

5000

6000

7000
Case # 11 - SMAPE for testing = 1.5307

True
Predicted

Training points
True testing points
Predicted testing points
Forecasting

