
 
 

 

  

Abstract—This paper presents/summarizes techniques and 
results for the Neural Network & Computational Intelligence 
Forecasting Competition organized by S. Crone and supported 
by SAS and IIF. The competition involves forecasting a large 
set of time series using methods of neural networks and 
computational intelligence technologies.  The primary goal of 
the competition is to identify the best strategies in developing 
neural network models for forecasting a large number of time 
series. In this paper, a multiple-model fusion scheme is 
examined from a point of view of forecasting a large number of 
time series and for the purpose of achieving more robust 
forecasting performance. 

I. INTRODUCTION 
Despite over 15 years of research and more than 2000 
publications on artificial neural networks for forecasting, 
neural networks have not yet been established as a valid and 
reliable forecasting method in time series forecasting, 
especially in situation where a large number of time series 
are involved  [1]. The primary purpose of the competition is 
thus to identify the “best practice” methodologies of neural 
networks for time series forecasting by evaluating a set of 
consistent neural network methodologies across a 
representative set of time series.  

Conventional design for time series forecasting models 
focuses on identifying the “single best” forecasting model 
from a collection of different models. Recent studies have 
demonstrated that for most real-world problems, the single 
model design often time cannot be designed to achieve the 
desired performance. And multiple models fusion, by 
leveraging complimentary information from different 
models can be more effective in achieving more robust 
forecasting performance. As a result, multiple models 
systems have gain more and more research interests in 
recent years. For example, neural network ensembles were 
used for weather forecasting [2] and for economic 
forecasting [3]. 

In the ISF05 time series competition, the author used 
neural network ensemble for forecasting. For the 2 time 
series data provided in the competition, neural network 
ensemble showed promising results. In this paper, we 
extended neural network ensemble to multiple level model 
fusion, where a series of generalized regression neural 
networks are used for time-series forecasting. In addition, 
we focus our effort on designing a multiple model 
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forecasting system in an automatic fashion so that the model 
building process can be applied to a large number of time 
series.  

The reminder of the paper is organized as follows. Section 
II describes the datasets used for the competition. 
Characteristics of the dataset and the challenges of 
forecasting are also highlighted. Our multiple-model 
forecasting scheme is presented in Section III. Forecasting 
results are given in Section IV. Section V concludes the 
paper.  

II. PROBLEM DESCRIPTIONS 

A. The datasets 
Two datasets are provided for competition. Dataset A is a 

complete dataset consisting of 111 monthly time series 
drawn from homogeneous population of empirical business 
time series. Dataset B, on the other hand, is a subset of 
Dataset A, which consists of 11 time series. Participants can 
submit their results for either or both of the datasets. The 
time series in the two datasets have different length of 
historical data points. Generally speaking, Dataset A has 
about 5 years, 60 months of data points, while Dataset B has 
about 10 years, 120 data points. All of the series start at 
January. For each of time series, we are required to 
forecasting 18 months of values based on the given 
historical data points.  
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Fig. 1 – Time plot of the time series sample 1 

 

0 12 24 36 48 60 72 84 96 108 120
0

2000

4000

6000

8000

10000

12000

14000

16000

 
Fig.2 – Time plot of the time series sample 2 
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Fig.3 – Time plot of the time series sample 3 
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Fig.4 – Time plot of the time series sample 4 

 
Figures 1 thru 4 show samples of the time series from 

Dataset B. From Figures 1 thru 4, we can make following 
observations about the time series in the datasets. 

• Series are generally seasonal - some stronger than 
other (Fig.4 for example). 

• Most series contain a certain level of trend (e.g., 
Figs. 1 and 4). The trend may not necessarily be 
linear. 

• Series may contain outliers (Fig.2 for example). 
• Data in a series may not be normally distributed. 

Fig. 4, for example, shows a skew data 
distribution. 

• Almost all time series are non-stationary, i.e., with 
varying mean, or variance, or both. 

 

B. Challenges and modeling strategies 
The above-mentioned observations for the series are not 

particularly unusual for real-world time series. There are 
known methods, for example, time plots, for identifying the 
features of a time series. However, most of these feature 
identification methods are manual and ah-hoc, thus an 
automation of these methods is needed for the competition 
so that they can be efficient in dealing with a large number 
of time series. There are also text book approaches, e.g., the 
Boc-Cox transformation, for treatment of the features (trend 
and seasonality). However, the effectiveness of these 
treatment measures is highly dependent on the time series. 
That is, no single treatment measure works well for all time 
series. One of the challenges we are facing in this 
competition is thus on how to adopt the forecasting 
modeling process that has been successfully used for single 
or small number of time series to a situation where a large 
number of time series are involved. The strategies for 

achieving superior forecasting performance in the 
competition is to develop a so-called automatic forecasting 
method that is “adaptive” to different time series such that a 
robust forecasting performance is always achieved for all 
time series.  

III. OUR APPROACH 
Geared towards developing an automated forecasting 

scheme that not only gives superior forecasting 
performance, but also works effectively for a large number 
of time series, in model building we focus on two equally 
important parts, preprocessing and modeling. These two 
parts are explained as follows. 

A. Preprocessing 
Preprocessing of time-series includes feature 

identification and feature treatment. Features of a time series 
refer to trend, seasonality, outliers, and discontinuities 
[Chatfield (2004)]. These features, especially outliers and 
discontinuities, complicate modeling and negatively affect 
forecasting performance. Correctly identifying these features 
so that a proper treatment measure can be taken is crucial in 
time series modeling and forecasting. Feature identification 
in our system is to automatically determine if a time series 
contains such features based on historical observations. If 
any of the afore-mentioned features is determined to be 
present in a series, treatment of such features is required. 
The treatment includes modifying outliers, imputing missing 
observations, and removing or modeling trend and 
seasonality effects. In this study, we focus on outlier 
removal and global trend detection. More specifically we 
like to have a general scheme that not only can automatically 
identify and treat the features (outlier and trend), but also is 
applicable for all time series concerned.  

 
We define an outlier as the point whose value is great 

than 4 times of the median of the 3 consecutive points 
before and after. That is, ix is an outlier if 

),,(4 123 −−−⋅≥ iiii xxxmedianx  and 
),,(4 321 +++⋅≥ iiii xxxmedianx  

Once an outlier is found, we replace its value with the 
average value of the points that are immediately before and 
after the outlier. 

 
In this study we are interested in identify large trends (we 
call them “global trends”). For example, the sample time 
series shown in Figures 1 & 3 are considered to have global 
trends while the sample time series shown in Figure 2 & 4 
are not. To determine if a time series has a global trend, we 
split the series into a series of 12-point-window segments 
and calculate means and standard deviations of these 
segments. Let the means and the standard deviations of n 
segments be },...,{ 21 nmmm=m  and },...,{ 21 nσσσ=σ . We 
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mm  as the global trend index. 

If 3≥GTI , the time series has global trend. Otherwise it 
does not.  
 
We take different strategies for time series with and without 
global trends in model building. For time series without 
global trend, we directly use the raw values as model inputs. 
On the other hand, we take first difference for time series 
with global trend as the simplest way to remove the trend. 
 
It is worthy pointing out that even though we only take 
actions towards outliers and trend, our preprocess step is 
fully automated and can be applied to all 111 time series 
without human intervention. 
 
We don’t take particular treatment for seasonality in 
preprocessing step. We take care of the seasonality effort in 
modeling step. 
 

B. Modeling 
We propose a multiple-model fusion based forecasting 

system.  In our forecasting system, there are 2 levels of 
multiple-model fusions. In the first level, we use 18 models, 
each of which is to perform one of 18 out-of-sample 
predictions. That is, the ith model performs i-step-ahead 
forecasting, where i =1,2, … 18. Figure 5 illustrates how the 
18 models work.  
 

Figure 5: The first level of multiple models 
(18 models for 1-to 18-step ahead prediction) 

 
We use the generalized regression neural network 

(GRNN) for our base model. GRNN is a universal 
approximator that can approximate a continuous function to 
an arbitrary accuracy, given a sufficient number of neurons. 
As shown in Figure 6, a typical GRNN has two layers of 
artificial neurons. While the first layer consists of radial 
basis neurons the second layer consists of neurons with a 
linear transfer function. First layer weights are simply the 
transpose of input vectors from the training set. The 

weighted input for the first layer neurons is the distance 
between the input vector and its weight vector. The neuron’s 
output is the radial basis function of the input scaled by the 
spread factor. Therefore, if a neuron weight is equal to the 
input vector, the distance between the two is zero, which 
gives an output of 1. This type of neuron gives an output 
characterizing the closeness between input vectors and 
weight vectors (training inputs).  

 

Figure 6: A typical GRNN architecture 
 
A GRNN has one tunable parameter, spread factor. When 

the spread factor is small the radial basis function is steep so 
that the neuron with the weight vector closest to the input 
will have a much larger output that other neurons. The 
network tends to respond with the target vector associated 
with the nearest design input vector. As the spread factor 
increases, the radial basis function’s slope gets smoother and 
several neurons may respond to an input vector. The 
network then acts like it is taking a weighted average 
between target vectors whose design input vectors are 
closest to the new input vector. As spread factor gets larger 
and larger, more and more neurons contribute to the average 
with the result that the network function becomes smoother. 

 

Figure 7: The second level of multiple model fusion -For each of the 18 
models in the first level, three individual GRNNs with different spread 

factors are used and the predictions of these individual GRNNs are fused 
 
As can be seen from above, spread factor of GRNN is one 

of the important factors affecting the prediction performance 
of GRNN. Unfortunately there is no unique spread factor 
that works for all problems. Moreover, there is no analytical 
way to accurately determine the spread factor.  For a given 
problem, experimental determination of spread factor is an 
important part of design efforts of GRNN.  For time series 
forecasting concerned in this study, since we are dealing 
with a large number of time series, we can’t afford to do 
experiments on determining the best spread factor for each 
individual time series. We could include an optimizer (e.g., 
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GA) as a wrapper to determine the optimal spread factor for 
each individual time series.  The objective function of the 
optimization could be the performance measure, i.e., the 
Symmetric mean absolute percentage error (SMAPE) of the 
testing samples. However, due to time limitation, in this 
submission, we do not adopt the optimization scheme for 
determining the spread factor. Instead, for each of the 18 
models we use three GRNNs, each of which uses one of the 
three pre-defined spread factors, 0.10, 0.15, and 0.20. The 
prediction is then the average of the outputs of the three 
networks. Figure 7 illustrates the concept. Our thinking here 
is that leveraging different spread factors would be our best 
strategy in achieving overall good performance for all 111 
time series concerned without identifying specific spread 
factor for each individual time series.  Certainly the 
leveraging strategy we adopt here would give us a less 
superior prediction performance comparing to using 
optimization scheme. In future work, we would like to 
explore the optimization schemes to see how much 
improvement we can gain in terms of prediction 
performance. 

 
Inputs to all GRNNs are kept the same, that is, the past 

consecutive 12 points, xt-1, xt-2,…, xt-12, for all 111 time 
series. Depending on weather or not the time series contains 
global trend, xs can be raw values or the first difference (see 
III-A for details). 

 
For each time series, we reserve last 18 points for testing 

and the remaining points for training set. We calculate the 
Symmetric mean absolute percentage error (SMAPE) for 
out-of-sample prediction of the 18 testing points. And we 
use the SMAPE to gauge the model performance for 

predicting the unknown 18 points. 

IV. RESULTS 
 

Figures 8 thru 11 show some forecasting results for 
sampled time series. 

V. CONCLUSION 
In this paper, we presents/summarizes techniques and 

results for the Neural Network & Computational Intelligence 
Forecasting Competition organized by S. Crone and 
supported by SAS and IIF. Geared towards developing an 
automated forecasting scheme that not only gives superior 
forecasting performance, but also works effectively for a 
large number of time series, we propose a multi-level model 
fusion scheme for time-series forecasting. 
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Figure 8: Sample prediction result – case # 4 
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Figure 9 : Sample prediction result – case # 5 
 
 

 
Figure 10 : Sample prediction result – case # 11 
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