Time Series Prediction as a Problem of Missing Values:
Application to ESTSP2007 and NN3 Competition Benchmarks

Antti Sorjamaa and Amaury Lendasse

Abstract—In this paper, time series prediction is considered Il. TIME SERIESPREDICTION
as a problem of missing values. A method for the determination . ‘o
of the missing time series values is presented. The method A. Data with Missing Values
is based on two projection methods: a nonlinear one (Self- In the time series prediction problem, the samples are
Organized Maps) and a linear one (Empirical Orthogonal generated by sliding a fixed window over the time series
Functions). The presented global methodology combines the and taking each window full of values as a sample. The size

advantages of both methods to get accurate candidates for the . .
prediction values. The methods are applied to two time series of the window and thus the length of the sampledisAll

competition datasets. samples are collected toragressor matrix
. INTRODUCTION X
T.he.presence of missing values in .the qnderlying time X — Xlz . j=1,2,..,N, 1)
series is a recurrent problem when dealing with databases. A :
number of methods have been developed to solve the problem X;

and fill the missing values. The methods can be classified in\'gvonere N
two distinct categories: deterministic methods and stskbha

methods. e . . o
. . . When predicting the future of the time series, the missing
Self-Organizing Maps [1] (SOM) aim to ideally 9roup 1 1ues are added to the end of the known values of the time

homogeneous  individuals, hlghhghtmg the _nelghborhoo ries. Then, logically the regressor matrix is missing esom
structure between classes in a chosen lattice. The SQ

. . . . ~ ~“values in the lower right corner. The shape and the size of
algorithm is based on an unsupervised learning p”nc'pl‘ﬁﬁe area of the missing values depends on the used method
where the training is entirely stochastic, data-driven. N

Qnd the horizon of prediction.
information about the input data is required. Recent ap- P

proaches propose to take advantage of the homogeneity Bf Prediction Strategy

the underlying classes for the data completion purposes [2] There are three prediction strategies for the long-term
Furthermore, the SOM algorithm allows the projection of rediction of time series that are mainly used. The first and
high-dimensional data to a low-dimensional grid. Througne |east calculation intensive is tiRecursive prediction

this projection and focusing on its property of topologystrategy, where the model selected in the learning phase for
preservation, the SOM allows a nonlinear interpolation fofhe first time step is used repeatedly, or recursively, as far

is the number of samples and eagh is a 7-
dimensional sample vector.

the missing values. _ as necessary. The predicted values are used as known values
Empirical Orthogonal Function (EOF) [3] models areang the prediction is done always only one step at a time.
deterministic enabling a linear projection without theslds ~ The next alternative is to use a different model to predict

the data dimensionality. They have also been used to develggch time step. ThidDirect prediction strategy needs a
models for finding missing data [4]. Moreover, EOF modelgjifferent model for each time step and is therefore many
allow a continuous interpolation of the missing values, bu§imes more calculation intensive. In many cases the Digect i
are sensitive to the initialization. still an appealing choice, because of the increased agcurac
This paper describes a new methodology, which combinggmpared to the Recursive strategy. Whereas the Recursive
the advantages of both the SOM and the EOF. The nonlinegkategy suffers from the accumulation of the prediction
interpolation property of the SOM is used as an accuragrors, the Direct does not.
initialization tool and then the Continuity property of tR®OF Third alternative is to use a mix of the tWO, called
method is used to recover missing data efficiently. DirRec prediction strategy [7]. With this prediction strategy a
The SOM is presented in the Section Ill, the EOF in Sedifferent model is trained for each time step and all preict
tion IV and the global methodology SOM+EOF in Sectionsajues are used as a known values in the process. It means
V. Section VI presents the experimental results using tWghat the regressor is increased by one in every time step) whe
competition datasets; The ESTSP2007 [5] and the NN3 [§he previous prediction is included in the learning datasTh
competition benchmarks. increases the calculation time in the learning processrbut i
o . . _ many cases, the accuracy is also better.
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predicted is estimated at once. Strictly speaking theegyat
used here is none of the above, but insteadaldwat-once
Strategy. m; (t + 1) = ...

m; (t) — (A (Mpary e,,0), My t) [my (1) — x¢41] , (5)

1. SELF-ORGANIZING MAP Viel,

The SOM algorithm is based on an unsupervised learningherec(t) is the adaptation gain parameter, whichdsl[-
principle, where training is entirely data-driven and nfoin  valued, decreasing gradually with time. The number of
mation about the input data is required [1]. Here we use a &eurons taken into account during the weight update depends
dimensional network, composed elunits (or code vectors) on the neighborhood functioh(m;, m;, ¢). The number of
shaped as a squatattice. Each unit of a network has as neurons, which need the weight update, usually decreases
many weights as the length of the learning data samples, with time.
xn,n = 1,2, ..., N. All units of a network can be collected to  After the weight update the next sample is randomly drawn
a weight matrixm (¢) = [my (¢),ms (¢),...,m. (¢t)] where from the data matrix and the procedure is started again by
m,; (t) is the T-dimensional weight vector of the unitat finding the BMU of the sample. The learning procedure is
time ¢ and ¢t represents the steps of the learning processtopped when the SOM algorithm has converged.

Each unit is connected to its neighboring units through a Once the SOM algorithm has converged, we obtain some
neighborhood functioi(m;, m;, ¢), which defines the shape clusters containing our data. Cottrell and lézty proposed

and the size of the neighborhood at titn&he neighborhood to fill the missing values of the dataset by the coordinates of
can be constant through the entire learning process or it cére code vectors of each BMU as natural first candidates for

change in the course of learning. the missing value completion:
The learning starts by initializing the network node
weights randomly. Then, for a randomly selected sample Ty (%) = Tan (MBMUx)) 5 (6)

X411, We calculate the Best Matching Unit (BMU), which

is the neuron whose weights are closest to the sample. THBerem,) (.) replaces the missing valuedx of sample
BMU calculation is defined as x with the corresponding values of the BMU of the sample.

The replacement is done for every data sample and then the
SOM has finished filling the missing values in the data.
M50 () = B8 mmI {Ixes1 —m; O}, (@) The procedure is symmarized in Tablg l. There is a toolbox
i€ available for performing the SOM algorithm in [9].

wherel = [1,2, ..., ] is the set of network node indices, the TABLE |
BMU denotes the index of the best matching node farfid
is a standard Euclidean norm.

If the randomly selected sample includes missing values,
the BMU cannot be solved outright. Instead, an adapted SOM 1) SOM node weights are initialized randomly
algorithm, proposed by Cottrell and Léiny [8], is used. The 2) SOM learning process begins

SUMMARY OF THE SOM ALGORITHM FOR FINDING THE MISSING
VALUES.

randomly drawn sample; ;; having missing value(s) is split a) Inputx is drawn from the learning data sat

into two SubsetSctTJrl — NMxt+1 U MxtH WhereNMxtH i) If x céqes not contain 2missing values, BMU is found
. ’ o according to Equation

is the S_Ubset where the valuesxaf,; are not m|SS|_ng_and ii) If x contains missing values, BMU is found according
My, is the subset, where the valuesxqf, ; are missing. to Equation 4

We define a norm on the subs&t\/. as b) Neuron weights are updated according to Equation 6

Xt41
3) Once the learning process is done, for each observatioiaioing

missing values, the weights of the BMU of the observation|are
substituted for the missing values

2
[xt+1 — m; (75)||NMxt+1 = Z (Xt41,6 — M k(1)",
ke NM.
(3)

Xt+1
where x; 1 for k = [1,...,T] denotes thek'" value of
the chosen vector angh; ;. (t) for £ = [1,...,T] and for This section presents a method called Empirical Orthog-
i=11,...,c is the k! value of thei’* code vector. onal Functions (EOF) [3]. In this paper, the EOF are used
Then the BMU is calculated with as a denoising tool and for finding the missing values at the
same time [4].
The EOF are calculated using a well-known Singular Value
MBI (x, ) = AT mm%rell {thﬂ —m; (t)||NMxt+1 } . Decomposition (SVD)

(4) K
When the BMU is found the network weights are updated X — UDV* = Z 0L ULVE, @)
k=1

IV. EMPIRICAL ORTHOGONAL FUNCTIONS

as



where X is a 2-dimensional data matriXJj and V are the V. GLOBAL METHODOLOGY

collections of singular vectora and v in each dimension  The two methodologies presented in the previous two sec-
respectivelyD is a diagonal matrix with the singular valuestions are combined and the global methodology is presented.
p in its diagonal andx’ is the smaller dimension X (or  The SOM algorithm for missing values is first ran through
the number of nonzero singular valuesXifis not full rank). performing a nonlinear projection for finding the missing
The singular values and the respective vectors are sorted\i@ues. Then, the result of the SOM estimation is used as
a decreasing order. initialization for the EOF method. The global methodology
When the EOF are used to denoise the data, not a#l summarized in Figure 1.
singular values and vectors are used to reconstruct the data

matrix. Instead, it is assumed that the vectors correspgndi SOM

to Iarggr singular values contain more data with respect to Dataset with Nonlinear,
the noise than the ones corresponding to smaller values [3]. Missing — discrete
Therefore, it is !oglcal to selegt largest singular vaIueg and values low-dimensional
the corresponding vectors and reconstruct the denoised dat projection

matrix using only them.

In the case where < K, the reconstructed data matrix is
obviously not the same than the original one. The lakger
is selected, the more original data, which also includesemor EOF

noise, is preserved. The optimais selected using validation C Linear,
ompleted .
methods, for example [10]. Data Sample ™ continuous,
The EOF (or the SVD) cannot be directly used with high-dimensional
databases including missing values. The missing values mus projection
be replaced by some initial values in order to use the EOF. _ _
This replacement can be for example the mean value of the Fig. 1. Global methodology summarized.

whole data matrixXX or the mean in one direction, row wise For the SOM we must select the optimal grid sizand for

or column wise. The latter approach is more logical W.he.ghe EOF the optimal number of singular values and vectors
the data matrix has some temporal or spatial structure in its L ; C .
g to be used. This is done using validation, using the same

columns or rows. validation set for all combinations of the parameterand

After the initial value replacement the EOF process begirbs Finally, the combination of SOM and EOF that gives the
by performing the SVD and the selectedsingular values smallest validation error is used to perform the final filling
and vectors are used to build the reconstruction. In order ngf the data.
to loseany information, only the missing values & are  while both the SOM and the EOF are able to fill the
replaced with the values from the reconstruction. After thenissing values alone, the experimental results demoastrat
replacement, the new data matrix is again broken down t@at together the accuracy is better. The fact that these two
singular values and vectors with the SVD and reconstructeggorithms suit well together is not surprising. Two pecspe
again. The procedure is repeated until a convergenceioriter tives can be considered to understand the complementarity
is fulfilled. of the algorithms.

The procedure is summarized in Table II. Firstly, the SOM algorithm allows nonlinear projection. In
this sense, even for a dataset with a complex and nonlinear
structure, the SOM code vectors will succeed to capture
the nonlinear characteristics of the inputs. However, the
projection is done on a low-dimensional grid (in our case
1) Initial values are substituted into missing values of thigioal Fwo-d|m¢n5|0nal) with the possibility of losing the intsic

data matrixX information of the data.

2) For eachy from 1 to K The EOF method is based on a linear transformation using
a) SVD algorithm calculateg singular values and eigenvectdrs the Singular Value Decomposition. Because of the linearity
b) écgﬁgﬁﬁg; values and vectors are used to make| et he EOF approach, it will fail to reflect the nonlinear
¢) The missing values from the original data are filled with|the Structures of the dataset, but the projection space can be

values from the reconstruction " as high as the dimension of the input data and remain
d) If the convergence criterion is fulfilled, the validatienror continuous

is calculated and saved and the nextalue is taken under o . .

inspection. If not, then we continue from step a) with the ~ There is a toolbox for performing the SOM+EOF in [11].

TABLE I
SUMMARY OF THE EOFMETHOD FOR FINDING MISSING VALUES

sameq value
3) The g with the smallest validation error is selected and used to ] VI EXPERIMENTAL_RE_SULTS
reconstruct the final filling of the missing values3a This paper presents an application of the SOM+EOF

method to two time series prediction benchmarks; The
ESTSP2007 competition dataset and the NN3 competition.



A. ESTSP2007 competition

6

This time series prediction benchmark includes a total ¢ L5 g
875 values from an unknown origin. The dataset is show £ 4 ]
in Figure 2. More information and the dataset can be foun § ;| ]
from the ESTSP2007 conference website [5]. :
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Fig. 4. Validation errors with respect to the number of EOF.
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Fig. 2. ESTSP 2007 Competition dataset.

For the model selection purposes the dataset is divided ir
two sets, learning and validation set. The learning setistsis  0.23 " 6 . 0 12 1 16 18 2

of 465 first values and the rest belongs to the validation se.. SOM size
The optlma_l regressor size is set to 11 after many trial af]’_#g, 5. Minimum validation errors with respect to the SOM siming the
error experiments. SOM+EQF method.

The optimal SOM size is selected using a simple validation
procedure, where the SOM learning is performed using only
the learning set and the validation set is used to tune the SC 25

size for one step ahead prediction. The validation errags a
. . w
shown in Figure 3. 2
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combination of the SOM size and the number of EOF. The
validation errors are shown in Figure 5 and 6.

From Figure 5 the optimal SOM is selected to bex15
and from Figure 6 the optimal number of EOF to 4 with the
validation error of 0,233.

Fig. 3. Validation errors with respect to the SOM grid size.

From Figure 3 the optimal SOM size is selected t«13
with validation error of 0,297. There is only very small
difference in the validation error with larger SOM sizes. o o

The only parameter of the EOF method is tuned using the For one step ahead prediction the regressor size is se_lect_ed
same learning and validation sets than with the SOM to gi® 11, but for the 50 steps ahead the regressor size is
comparable results. Also the regressor size is kept the saffi§reased to 60 in order to fit the missing values to the
than with the SOM and the optimization is done for one stefff9"€SSor-
ahead prediction. The validation errors are shown in Figure Our experiments with several other datasets have shown
4, that the EOF method uses larger number of EOF when the

From Figure 4 the optimal number of EOF is selected to pegressor size is increased. Therefore, the final prediasio
with validation error of 0,451. The result suggests rekdyiv done using the number of EOF fixed to 8. The prediction of
strong noise influence in the singular values after the thirdne 50 timesteps is shown in Figure 7.
one, where the validation error is increasing rapidly. From the Figure 7 it seems that that the prediction has

For the SOM+EOF method the two separate methodemoved the noise and is predicting the next peak of the
are combined and the validation is performed for eactime series quite well.



1) Time Series 3: The results for the™ time series are
presented in the following. In Figure 10 the 10-fold Cross-
Validation NMSE for the SOM and the SOM+EOF method
SN are presented. The used regressor size is 15, which isestlect
Y empirically using trial and error.
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Fig. 7. Prediction of 50 next values of the competition dataske real
values are presented by the solid line and the dashed onenpsethe

Validation NMSE
o
[9)]
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B. NN3 Competition SOM Grid Size

The NN3 competition consists of 11 different time serie§ig- 10. Validation errors of tha™d time series. Solid line represents the
with variable lengths ranging from 126 values to 115 value$©M and the dashed one the SOM+EOF.
In this paper, the results with two time series are presented From Figure 10 the smallest normalized validation error
namely with the3" and the4™ time series, shown in s 957 and it is achieved with the SOM siZex 8 with
Figures 8 and 9 respectively. For more information aboyhe poth methods. In this case, the selected number of EOF
the competition visit [6]. is the maximum 15. The validation NMSE is also the same
than with the SOM.
Figure 11 shows the EOF validation errors using the SOM
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Fig. 11. EOF validation errors of th&@ time series using SOM grid size
8 x 8.

From Figure 11 we can clearly see, that the second last
singular value contains more noise than any other values Thi
must be taken into account when selecting the parameters for
the final prediction.

Because the regressor size must be increased to 33 from
the initial 15 in order to fit the 18 missing values in
‘ ‘ the regressor, the number of EOF must also be increased.

020 30 40 50 60 70 80 90 100 110 Therefore, taking into account the previous findings, the
number of EOF to be used in the final prediction is fixed

Fig. 9. NN3 Competition dataset! time series. to 17.
The final prediction using the SOM+EOF method is shown

Because the EOF method was not as good as the SOMFigure 12.
and the SOM+EOF, we use only the two latter ones with the 2) Time Series 4: The results for thet*” time series are
NN3 competition time series. Also, due to the scale of thpresented in the following. In Figure 13 the 10-fold Cross-
series, the normalized MSE is used in the validation errdralidation errors with the SOM and the SOM+EOF are
graphs. Finally, we use a 10-fold Cross-Validation insteagresented. The regressor size is set to 13 after several tria
of a simple validation in order to stabilize the parameteand error experiments.
selection results. Otherwise, the procedure follows the on From Figure 13 the SOM size with the lowest validation
described in the previous section. error is8 x 8 for the SOM method and1 x 11 for the
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The advantages of the SOM include the ability to per-
form a nonlinear projection of a high-dimensional data to
a smaller dimension with the interpolation between digcret
data points.

For the EOF, the advantages include high-dimensional lin-
ear projection of high-dimensional data without the deseea
of dimensionality and the speed and the simplicity of the
method.

The SOM+EOF includes the advantages of both individual
methods, leading to a new accurate approximation method-

Fig. 12. Prediction of th&"® time series. Solid line represents the knownology for the missing future values of a time series. The

time series and the dashed one the prediction using the SOM-+&&hod.

8 10
SOM Grid Size

Fig. 13. Validation errors of that" time series. Solid line represents the

SOM and the dashed one the SOM+EOF.

performance obtained in validation show the better acgurac
of the new methodology.

It is also evident that the EOF is greatly dependent on a
good initialization in order to produce accurate resultise T
SOM gives a good initialization even though the method
alone is not so accurate. The two methods complete each
other and work well together.

For further work, the modifications and performance
upgrades of the global methodology are investigated and
applied to other types of datasets and time series from other
fields of science, for example climatology and finance.
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For the prediction, the regressor size is increased to
from the initial 13 in order to fit the 18 missing values in
the regressor.

Similarly than before, the number of EOF must also bem

increased. The final number of EOF is fixed to 8. Thep
prediction of 18 timesteps is shown in Figure 14.
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Fig. 14. Prediction of the'” time series. Solid line represents the known [9]
time series and the dashed one the prediction. [10

VIl. CONCLUSION

In this paper, we have presented a new methodology
for finding the missing values in a temporal database. The
methodology combines the Self-Organizing Maps (SOM)
and the Empirical Orthogonal Functions (EOF) efficiently
and the global methodology (the SOM+EOF) is used to find
the future values of a time series.

[11]
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