
 
 

 

  

Abstract—Kernel functions are used in support vector 
regression (SVR) to compute the inner product in a higher 
dimensional feature space.  The performance of approximation 
depends on the chosen kernels.  The radial basis function 
(RBF) kernel is a Mercer’s kernel that has been widely used in 
many problems.  However, it still has the restriction in some 
complex problems.  In order to obtain a more flexible kernel 
function, the multi-scale RBF kernels are combined by non-
negative weighting linear combination.  This proposed kernel is 
proved to be a Mercer’s kernel.  Then, the evolutionary 
strategy (ES) is applied for adjusting the parameters of SVR 
and kernel function.  Moreover, subsets cross-validation is used 
for evaluating these parameters.  The optimum values of these 
parameters are searched by (5+10)-ES.  The experimental 
results show the ability of the proposed method that 
outperforms the statistical techniques.   

I. INTRODUCTION 
UPPORT vector machines (SVMs) are learning algorithms 
proposed by Vapnik et al. [1], based on the idea of the 

empirical risk minimization principle. They have been 
widely used in many applications such as pattern 
recognitions and function approximations.  Basically, SVM 
operates a linear hyperplane in an augmented space by 
means of some defined kernels satisfying Mercer’s condition 
[1], [2], [3].   

These kernels map the input vectors into a very high 
dimensional space, possibly of infinite dimension, where a 
linear hyperplane is more likely [3].  There are many types 
of kernel functions such as linear kernels, polynomial 
kernels, sigmoid kernels, and RBF kernels.  Each kernel 
function is suitable for some tasks, and it must be chosen for 
the tasks under consideration by hand or using prior 
knowledge [4].   

The RBF kernel is a most successful kernel in many 
problems, but still has the restrictions in some complex 
problems.  Therefore, we propose to improve the efficiency 
of approximation by using the combination of RBF kernels 
at different scales.  These kernels are combined by including 
weights.   

The weights, the widths of the RBF kernels, the deviation 
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of approximation, and the regularization parameter of SVM 
are the adjustable parameters; these parameters are called 
hyperparameters.  In general, these hyperparameters are 
usually determined by a grid search.  The hyperparameters 
are varied with a fixed step-size in a range of values, but this 
kind of search consumes a lot of time.   

Hence, we propose to use the evolutionary strategies 
(ESs) for choosing these hyperparameters.  However, the 
objective function is an important part in evolutionary 
algorithms.  There are many ways to measure the fitness of 
the hyperparameters.  In this work, we propose to use 
subsets cross-validation for evaluating the hyperparameters 
in the evolutionary process. 

We give a short description of support vector regression 
in Section II.  In Section III and Section IV we propose the 
multi-scale RBF kernel and apply evolutionary strategies to 
determine the appropriate hyperparameters, respectively.  
The proposed kernels with the help of ES are tested in 
Section V.  Finally, the conclusions are given in Section VI. 

II. SUPPORT VECTOR REGRESSION 
The support vector machine is a learning algorithm that 

can be divided into support vector classification and support 
vector regression.  Support Vector Regression (SVR) is a 
powerful method that is able to approximate a real valued 
function in terms of a small subset (called support vectors) 
of the training examples.  Suppose we are given training 
data { } RXyxyx ll ×⊂),(,),,( 11 K , where X  denotes the 
space of input patterns.   

In −ε SV regression, our goal is to find a function )(xf  
that has at most ε  deviation from the actually obtained 
target iy  for all the training data, and at the same time is as 
flat as possible.  In other words, we do not care about errors 
as long as they are less than ε , but we do not accept any 
deviation larger than this [5]. 

We begin by describing the case of linear functions f , 
taking in form: 

 bxwxf += ,)(  with Xw∈ , Rb∈ . (1) 

Flatness in this case means that one seeks a small w .  One 
way to ensure this is to minimize the norm, i.e. 

www ,2 = .  We can write this problem as a convex 
optimization problem: 
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Sometimes, we may want to allow for some errors.  Soft 
margin loss function was adapted to SV machines; one can 
introduce slack variables iξ , *

iξ  to cope with otherwise 
infeasible constraints of the optimization problem [5].  
Hence we will get    
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The constant 0>C  determines the trade-off between the 
flatness of f  and the amount up to which deviations larger 
than ε  are tolerated.  In most cases this optimization 
problem can be solved more easily in its dual formulation 
[5].  An example of a linear SVR is shown in Fig. 1. 
 

 
Fig. 1.  An example of the soft margin for a linear SVR. 

 
Moreover, seeking a proper linear hyperplane in an input 

space has the restrictions.  There is an important technique 
that enables these machines to produce complex nonlinear 
approximation inside the original space.  This performs by 
mapping the input space into a higher dimensional feature 
space through a mapping function Φ  [6].  This can be 
achieved by substituting )( ixΦ  into each training 
example ix .  However, a good property of SVM is that it is 
not necessary to know the explicit form of Φ .  Only the 
inner product in the feature space, called kernel function 

)()(),( yxyxK Φ⋅Φ= , must be defined.   
The function which can be a kernel must satisfy Mercer’s 

condition [7].  Some of the common kernels are shown in 
Table I.  Each kernel corresponds to some feature space and 
because no explicit mapping to this feature space occurs, 
optimal linear separators can be found efficiently in the 
feature space with millions of dimensions [8].   

 
TABLE I 

COMMON KERNEL FUNCTIONS 

Kernel Formula 

Linear yxyxK ⋅=),(  

Polynomial dyxyxK )1(),( ⋅+=  

Sigmoid )tanh(),( βα +⋅= yxyxK  

Exponential RBF )exp(),( yxyxK −−= γ  

Gaussian RBF )exp(),( 2yxyxK −−= γ  

Multi-quadratic 22),( cyxyxK +−−=  

 

III. MULTI-SCALE RBF KERNEL 
The Gaussian RBF kernel is widely used in many 

problems.  It uses the Euclidean distance between two points 
in the original space to find the correlation in the augmented 
space [3].  This correlation is rather smooth, and there is 
only one parameter for adjusting the width of RBF, which is 
not powerful enough for some complex problems.  In order 
to get a better kernel, the combination of RBF kernels at 
different scales is proposed.  The analytic expression of this 
kernel is the following: 

 ∑
=

=Κ
n

i
ii yxKayx

1

),,(),( γ , (4) 

where n  is a positive integer,  ia  for ni ,...,1=  are the 
arbitrary non-negative weighting constants, and ),,( iyxK γ  = 

)exp( 2yxi −−γ  is the RBF kernel at the width iγ  for 
ni ,...,1= . 

In general, the function which maps the input space into 
the augmented feature space is unknown.  However, the 
existence of such function is assured by Mercer’s theorem 
[4].  The Mercer’s theorem [2], [4] is shown in Fig. 2. 
 

 
Fig. 2.  The Mercer’s theorem. 

 



 
 

 

The proposed kernel functions can be proved to be an 
admissible kernel by the Mercer’s theorem.  The proving 
process is shown in Fig. 3.  The RBF is a well-known 
Mercer’s kernel.  Therefore, the non-negative linear 
combination of RBFs in (4) can be proved to be the 
Mercer’s kernel. 
 

 
Fig. 3.  The proof of the proposed kernel. 

 
As shown in (4), there are n2  parameters when n  terms 

of RBF kernels are used n(  parameters for adjusting 
weights and n  values of the widths of RBFs ).   However, 
we notice that the number of parameters can be reduced to 

12 −n  by fixing a value of the first parameter to 1.  The 
multi-scale RBF kernel becomes as follows 

 ∑
−

=

+=Κ
1

1
0 ),,(),,(),(

n

i
ii yxKayxKyx γγ . (5) 

This form of the multi-scale RBF kernel will be used in the 
rest of this paper. 

IV. EVOLUTIONARY STRATEGIES FOR SVR BASED ON 
MULTI-SCALE RBF KERNEL 

Evolutionary strategies (ES, [9]) are based on the 
principles of adaptive selection found in the natural world.  
ES has been successfully used to solve various types of 
optimization problems [10].  Each generation (iteration) of 
the ES algorithm takes a population of individuals (potential 
solutions) and modifies the problem parameters to produce 
offspring (new solutions) [11].  Only the highest fit 
individuals (better solutions) survive to produce new 
generations [11].   

In order to obtain appropriate values of the 
hyperparameters, ES is considered.  There are several 
different versions of ES.  Nevertheless, we prefer to use the 

( λµ + )-ES where µ  parents produce λ  offspring.  Both 
parents and offspring compete equally for survival [11].  
The (5+10)-ES is applied to adjust these hyperparameters, 
and this algorithm is shown in Fig. 4.      
 

  t = 0; 
 initialization( 51 ,..., vv vv ,σv ); 
 evaluate )(),...,( 51 vfvf vv ; 
 while (t < 500) do 
  for i =1 to 10 do 
   iv ′v  = recombination( 51 ,..., vv vv ); 
   iv ′v  = mutate )( iv′v ; 
   evaluate )( ivf ′v ; 
  end 
  ( 51 ,..., vv vv ) = select( 51 ,..., vv vv , 101 ,..., vv ′′ vv )  
  σv = mutate )(σσ

v ; 
  t = t+1; 
 end 

 

Fig. 4.  (5+10)-ES algorithm. 
 
This algorithm uses 5 solutions to produce 10 new 

solutions by a recombination method.  These new solutions 
are mutated and evaluated, but only the 5 fittest solutions are 
selected from 5+10 solutions to be the parents in the next 
generation.  These processes will be repeated until a fixed 
number of generations have been produced or the 
acceptance criterion is reached. 

A. Initialization 
Let vv  be the non-negative real-value vector of the 

hyperparameters that has 22 +n  dimensions.  The vector vv  
is represented in the form: 

 vv = (C , ε , n , 0γ , 1a , 1γ , 2a , 2γ , … , 1−na , 1−nγ ), (6) 

where C  is the regularization parameter, ε  is the deviation 
of an approximation, n  is the number of terms of RBFs, iγ  
for 1,...,0 −= ni are the widths of RBFs, and ia  for 

1,...,1 −= ni  are the weights of RBFs.   
The (5+10)-ES algorithm starts with the 0th generation 

(t=0) that selects 5 solutions 51 ,..., vv vv  and standard deviation 
22 +

+∈ nRσv  using randomization.  These 5 initial solutions are 
evaluated to calculate their fitness.  Our goal is to find vv  
that optimizes the objective function )(vf v .   

B. Recombination 
The recombination function will create 10 new solutions.  

We use the global intermediary recombination method for 
creating these 10 new solutions.  Ten pairs of solutions are 
selected from conventional 5 solutions.  The average of each 
pair of solutions, element by element, is a new solution.   
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C. Mutation 
The iv′v  for i =1,…,10 are mutated by adding each of them 

with ( 1z , 2z ,…, 22 +nz ), and iz  is a random value from a 

normal distribution with zero mean and 2
iσ  variation.   

 mutate )(vv  = ( 1zC + , 2z+ε , 3zn + , 40 z+γ , 
… , 121 +− + nn za , 221 +− + nn zγ )  

),0(~ 2
iii Nz σ . 

 (8) 

In each generation, the standard deviation will be adjusted 
by 

 mutate )(σσ
v  = ( 1

1
ze⋅σ , 2

2
ze⋅σ , … , 22

22
+⋅+

nz
n eσ )  

),0(~ 2τii Nz , 
 (9) 

when τ  is an arbitrary constant.   

D. Evaluation 
In general, percentage error is used to measure the 

efficiency of regression model.  However, this function may 
overfit training data.  Sometimes, data contain a lot of noise, 
and thus if the model fits these noisy data, the learned 
concept may be wrong.  Hence, we would like to validate a 
set of hyperparameters on many training sets.  A good 
hyperparameters should perform well on these training data.  
However, as we have only a fixed amount of training data.  
Therefore, 5-subsets cross-validation is proposed to avoid 
the overfit problems.   

At the beginning, the training data are divided into five 
subsets, each of which has almost the same number of data.  
For each generation of ES, the classifiers with the same 
hyperparameters are trained and validated five times.  In the 
j th iteration ( j =1, 2, 3, 4, 5), the classifier is trained on all 

subsets except for the j th one.  Then, the error of prediction 
is calculated for the j th subset.  The average of these five 
errors is used to be the objective function )(vf v .  These 
partitions are displayed in Fig. 5. 

 
 
 

 
Fig. 5.  Partition training data into 5 subsets. 

 

V. EXPERIMENTAL RESULTS 
In order to verify the performance of the proposed 

method, SVRs with the multi-scale RBF kernels are trained 
and tested on 11 time series datasets from Neural 
Forecasting Competition [12].  These datasets are monthly 
time series drawn from homogeneous population of 
empirical business time series [12].  Since these datasets are 
used for competition, we can ensure that these data are not 
so easy.  In each dataset, the data of 12 prior periods are 
used as the training data for predicting the next period.  

The evolutionary strategies are used to find the optimal 
hyperparameters.  The value of τ  in evaluation process of 
these experiments is 1.0.  The number of RBF terms is a 
positive integer that is less than or equal to 10.  The widths 
of RBFs )( iγ , the weights of RBFs )( ia , the deviation of an 
approximation )( ε , and the regularization parameter )(C  
are real numbers between 0.0 and 10.0.  These 
hyperparameters are inspected within 500 generations of ES.   

The performance of the proposed method is evaluated by 
the symmetric mean absolute percentage error (SMAPE) 
[13], which is defined as 

 SMAPE = ∑
=

×
+

−l

i ii

ii

yy
yy

l 1

100
2)ˆ(

ˆ1  (10) 

where iy  for li ,...,1=  are the actually targets of the training 
data, iŷ  for li ,...,1=  are the forecast values, and l  is the 
number of training data.  The experimental results are shown 
in Table II.  
 



 
 

 

TABLE II 
THE SMAPE VALUES ON TRAINING DATA OF EACH DATASET (%) 

Datasets Cumulative 
Mean 

Moving 
Average 

N=5 

Exponential 
Smoothing 

α =0.8 

ES-SVR  
m-RBF 

NN3_101 4.9062 3.3791 4.5050 1.1838 

NN3_102 35.2892 38.3442 20.9627 5.6823 

NN3_103 96.5719 93.7492 56.6141 17.9259 

NN3_104 39.0983 40.6747 25.9709 7.7985 

NN3_105 6.1532 3.3809 2.8427 1.2307 

NN3_106 8.2873 8.4313 8.8172 3.0020 

NN3_107 4.4867 3.7889 3.2979 1.3381 

NN3_108 23.3428 21.7641 24.5493 7.1894 

NN3_109 19.3230 7.8606 5.4935 2.2521 

NN3_110 39.2046 42.5192 30.5229 3.8448 

NN3_111 19.7143 20.4824 19.4045 7.0860 

Average 26.9434 25.8522 18.4528 5.3212 

 

 
The experimental results show the ability of the proposed 

method by SMAPE that outperforms the statistical 
techniques, i.e. the cumulative mean, the moving average, 
and the exponential smoothing.  Moreover, the proposed 
method that combines two techniques of ES and SVR based 
on the multi-scale RBF kernel yields the SMAPE values less 
than SVR with the single RBF kernel in all datasets.  The 
average SMAPE on 11 datasets of the proposed method is 
the best when compared with the other techniques.   

The examples of the approximations are illustrated as 
graphs in Fig. 6.  From these graphs, the proposed method is 
compared with the cumulative mean and the moving 
average.  The proposed method and the moving average 
yield the results that are similar to the empirical data.  
However, with the help of ES, the proposed method can 
determine the optimal hyperparameters in a more convenient 
way.  For the cumulative mean, the results of the 
approximation are not good enough; it does not perform 
well on these data, where there are both seasonal and trend 
characteristics.   

 
 

 
Fig. 6.  Graph of the prediction by the proposed method, the cumulative mean, and the moving average on NN3_111 dataset. 

 



 
 

 

VI. CONCLUSION 
The non-negative linear combination of multiple RBF 

kernels with including weights is proposed for support 
vector regression.  The proposed kernel is proved to be an 
admissible kernel by Mercer’s theorem.  Then, the 
evolutionary strategy is applied to the adjustment of the 
hyperparameters of SVR.  The optimum values of these 
hyperparameters are searched.  Moreover, subsets cross-
validation on the error of prediction is considered to be the 
objective function in evolutionary process to avoid the 
overfit problems. 

The experimental results show the ability of the proposed 
method through the symmetric mean absolute percentage 
error (SMAPE).  When SVR uses the proposed kernel, it is 
able to learn from data very well.  Furthermore, the 
evolutionary strategy is effective in optimizing the 
hyperparameters.   

Hence, the proposed method is highly suitable for the 
complex problems where we have no prior knowledge about 
their hyperparameters.  Besides, this non-negative linear 
combination can be applied to other Mercer’s kernels such 
as sigmoid, polynomial, or Fourier series kernels, as the 
general form of linear combination of the Mercer’s kernels 
has been proved to be a Mercer’s kernel already. 
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